Model View Controller (MVC)

A mvc Design Pattern

= Wi using MVC for BSP

i} Creating a Controller

(3 Creating a View

] Testing Controllers

[A calling (Sub) Controllers
(3 Calling a View

i} Creating Error Pages

A From Pages to Controllers

(A can Options of BSP Components
] Navigation

[A Lifetime

= i Data Binding

| Calling the Model Class by the Controller

= W Components

[A Process Flow

= Creating Your Own Components

| Creating the Top-Level Controller
] Creating Components

] Calling Components

] Determining Input Processing

[3 Class CL_BSP_CONTROLLER2

- L Examples of Architecture

(3 Bsp Application with Controllers and Views

[BsP Application with Several Views per Controller
[3 Combination of the Previous Examples

i} Calling Controllers of Other Applications

(3 Calling Several Controllers from a View
= Wi Model View Controller Tutorial

i} Creating a Controller
| Creating a View

i} Calling a Controller

Model View Controller (MVC) &

Use

SAP Web Application Server 6.20 has implemented the Model View Controller (MVC) design
pattern, which is widely used in the user interface programming field and which has proved its
worth, as an extension of the previous BSP implementation model. Its controller-based use
ensures an even clearer distinction between application logic and presentation logic in BSP
applications. You can structure graphical user interfaces clearly and organize them in logical
units, even with complex applications.

Using the MVC design pattern has the following advantages:

e Structuring BSP applications is simplified, since the view is cleanly separated from the
controller and the model. This not only facilitates changing BSP applications, but also
considerably improves their maintenance.

® You have the option of generating program-driven layout. The HTML/XML output is
therefore created by program code instead of a page with scripting.

e Navigation using the <bsp:goto> element and call using the <bsp:cal I> element. The

advantage of using <bsp:goto> navigation over redirect is that there is no additional
network traffic. Furthermore, you remain in the same work process, which can have
advantages for creating objects and memory space. The call using <bsp:cal l>

element is more variable than adding them using INCLUDEdirective, since it is triggered
at runtime.

With the call option using <bsp:cal l>, you can also distribute the user interface into
components.

e Optimized performance due to fewer redirects.

® |Intuitive and east-to-use interface for application development.

3

Previous BSP applications, that is, BSP applications without MVC, can still be
executed without requiring any changes. MVC does, however, have various
advantages with more complex applications. See Using MVC for BSP.

Integration

The MVC design pattern is integrated in the BSP programming model and the Web Application
Builder of the ABAP development environment (Transaction SE80) from SAP Web Application
Server 6.20.

Functions

A BSP application can consist of one or more controllers and Business Server Pages, as well as
known elements such application classes, MIME objects and themes. A BSP can have different
characteristics; it is either a page with flow logic (as before), or a view or a page fragment:

BSP Application |

Application Class

Layourt

| | Event Handler
Controller AutoPage Attribute b

Controller Class

URL

|
I_JJ

Within a BSP application, there can be several controllers, several views and several pages with
flow logic.

Controllers

A controller is the instance of a central controller class. In the BSP-MVC environment, each
controller is directly or indirectly derived from the same base class CL_BSP_CONTROLLER2,
where the central method is DO_REQUEST.

There is a URL for every controller that can be addressed externally, such as using a browser. A
controller can therefore be used as the initial point of entry to a BSP application. The mapping
of the URL to the controller class is determined in the BSP application.

A controller is the controlling instance in the MVC design pattern, where it also acts as the
controlling mechanism. It carries out the following tasks:

® |t provides the data

® |tis responsible for selecting the correct layout
® |t triggers data initialization

® |t executes input processing

® |t creates and calls a view instance

Layout selection

A controller will usually call a view instance for creating the HTML / XML output. The controller
can call a view that is created using a factory method. The theme or the browser variant, for
example, can be used here as the selection criteria. If a controller passes the control to a view,
it can —and should — set attributes to the view. These attributes may just be data, or a
reference to one (or, in extreme cases, several) model(s). A reference to the controller is
automatically transferred.

A

A controller has access only to views in its own application.
A controller can, however, delegate processing to another controller, and this
controller can be located in a different application.

A controller should not work with too many views, since all of these requests are processed
centrally. On the other hand, the controller should jump to all views that have the same or
very similar input processing.

Data provision

Although a controller does not have any pre-defined attributes, they can be set and read using
generic methods. However, a controller should provide a method init_attributes,
which is responsible for filling the attributes. There is a service method that facilitates filling
the attributes.

Event handling

The controller also takes care of event handling. It takes on all of the tasks that were executed
in the previous BSP programming model by the @event handlers: It carries out initialization
and request processing, manages data transfer and is responsible for managing views and
controlling a view’s lifetime.

4

Redirects from the controller or page to the controller or page can be easily
implemented. See also Navigation

Cor
3

Py

If it cannot be decided until input processing which page should follow, we
recommend that you let the controller branch to different views (for example, if it is
checked internally whether the user has registered as a customer, and the
corresponding data is then queried).

A controller can also be used to delegate control over screens to the sub-controller. A
controller can delegate the control for a whole screen or a screen section to one or more
different sub-controllers. This can result in a complex tree structure of controllers and
components can be formed (that consist of both cascading controllers as well as their
corresponding views).

You can find information about the life cycle of controllers in Lifetime.

View

Views are only responsible for the layout; they visualize the application data. Views are very
much like pages, although they do not have event handlers nor auto-page attributes, nor their
own URL. Unlike auto-page attributes, normal page attributes can be used, which are then
filled by the controller. Controllers should control calling views and communicate with a
model.

If the type of controller class is known for a view (see the Properties tab for the view), the view
can also access the attributes of the controller class.

You can find information about the life cycle of views in Lifetime.

Models

The model is used to obtain all necessary application data from the database. It represents the
internal data structures and corresponds to the @application class used in the remaining BSP
programming model. The model is responsible for carrying out the central actions of reading,
modifying, blocking and saving data.

When used with controllers, this controller can create a reference to a class that is used as a
model. Class CL_BSP_MODEL is available for this (see also Data Connection).

MVC in BSP Applications

B Event handling
B Update application data
B Determine the control flow

ﬂb Controller

l D efine the application data

B U=zua connection to
business functionality

B Visualize data

e CoONrol flow
s [ata Tlow

For more information, refer to:
Using MVC for BSP

Class CL_BSP_CONTROLLER2
Navigation

Lifetime

BSP Component Call Options
Components

Activities
Creating a Controller

Creating a View
Calling a Controller
Calling a View

Creating Error Pages

4

A simple Tutorial is available for your first steps with the MVC design pattern.

Example
You can find an example of MVC in the system in BSP application BSP_MODEL.

Furthermore, the following Architecture Examples are outlined:

® BSP Application with Controllers and Views

® BSP Application with Several Views per Controller
® Combination of the Previous Examples

e Calling Controllers of Other Applications

e Calling Several Controllers from a View

MVC Design Pattern m

The Model View Controller (MVC) design pattern contains a clear distinction between
processing control, data model and displaying the data in the interface. These three areas are
formally distinguished from each other by three objects: model, view and controller. As a
result, you can easily split Web applications into logical units.

The model is used as an application object of the application data administration. It responds to
information requests about its status, which usually come from the view, as well as to
statements for status changes, which are usually sent by the controller. In this way, only the
model is used to process data internally, without making reference to the application and its
user interface.

There can be different views for a model, which can be implemented using different view pages.

The view handles the graphical and textual output at the interface and therefore represents the
input and output data in each interface element, such as pushbuttons, menus, dialog boxes and
so on. The view takes of visualization. To visualize the status, the view queries the model, or
the model informs the view about possible status changes.

The controller interprets and monitors the data that is input by the user using the mouse and
the keyboard, causing the model or the view later to change if necessary. Input data is
forwarded and changes to the model data are initiated. The controller uses the model methods
to change the internal status and then informs the view about this. This is how the controller
determines reactions to the user input and controls processing.

The view and the controller together form the user interface.

Since the model does not recognize either views or the controller, internal data processing is
detached from the user interface. As a result, changes to the user interface have no effect on
internal data processing and the data structure. You also have the option, however, of
displaying the data in different formats; you can display election results as a table, a bar chart or
as a pie chart.

You can find additional information about the MVC design pattern on the Internet and in current
specialist literature.

Using MVC for BSP m

Uses

All BSP applications that you created with SAP Web AS 6.10 can also be executed without
MVC. In general, you do not need to change anything.

The previous BSP implementation model gives you the option of controlling event handling and
navigation using redirects.

The MVC design pattern provides you with various advantages, so that you can consider
converting to MVC in the following cases:

e If your pages are dynamically composed of several parts (components)

A controller can assemble a page from several views. As a result, the layout is
componentized.

e Ifinput processing is so complex that it should be subdivided into different methods

A controller offers great flexibility, especially during input processing, since you
can create and call new methods.

If the system cannot decide which page comes next until input processing, we
recommend that you let the controller branch to different views.

e If redirects using navigation can lead to performance problems (such as slow diversion)

e If visualization logic is fairly important, since you can use MVC to separate the logic
from the layout

o If the layout from a different person is being processed as the visualization logic

e If parts of the layout should be created by the program, such as by a generating
program or an XSLT processor

Combination of MVC with BSP

You can combine the technology of the previous implementation model for BSPs with the new
MVC design pattern.

e In an application, there may be pages with flow logic as well as controllers and views
e The views can only be called by the controllers.

e Redirects from pages to controllers and back can take place with the help of redirect
using the navigation methods.

¢ Inthe page layouts you can use the <bsp:cal I> element or the <bsp:goto>
element to call a controller. You cannot use these elements to call pages.

Process

e Use the top controller as a point of entry to your BSP application and its process flow.
First create a controller (see Creating Controllers).

e Then a call a view from this top controller. Next create a corresponding view (see
Creating Views).

o Now test your controller.
Then call the controller or the sub-controller (see Calling Controllers), and then the
view (see Calling Views).

e If necessary, you can also create error pages.

From Pages to Controllers m

With a "normal" page, the presentation is determined by the layout, whilst in the MVC design
pattern, views specify the presentation. With normal BSPs, predefined event handlers are
available to process events. With MVC on the other hand, events are handled by controllers.

Normal pages are different from controllers especially with regard to event handling and
programming. The events of the pages can be matched with the controller methods:

e Page events and main controller methods
e Page events and sub-controller methods

Page events and main controller methods

A main controller handles both input and output processing, where it uses the central method
DO_REQUEST to call the methods specializing in input processing: DO_HANDLE_DATA,
DO_HANDLE_EVENT and DO_FINISH_INPUT. In method DO_REQUEST, input processing must
be triggered using DISPATCH_INPUT. This corresponds to the processing steps in the purely
page-based BSP programming model that are executed using events Don Request, &
OnlInputProcessing, QOnManipulation and ﬂLayout.

Page events and sub-controller methods

From method DO_REQUEST, the three following methods required for input processing are
called:

e DO_HANDLE_DATA
e DO_HANDLE_EVENT
e DO_FINISH_INPUT

Call Options of BSP Components m

In general, views can only be called from controllers. The only exceptions are error pages.
Controllers can be called from controllers, or from the layout methods of pages and views.
The calls can be considered as "forwarding a request” or as "adding a page fragment".

Calls that are made from a controller are identical. Only the environment is different, particularly
depending on whether or not data was already written in the HTTP response, and whether
additional data is subsequently added in the HTTP response.

The calls are different from views or pages. You can use the following elements of BSP
extension bsp to branch from a view or a page to a controller:

e <bsp:goto>
Forward

o <bsp:call>

Insert

These two elements are based on the same technology as when a controller is called by a
controller. As inner elements, both can only have elements of type <bsp:parameter>. You
hereby determine the parameters that are passed to the controller.

Navigation =

There are two options for navigating to a different URL:

e navigation->goto page for a page or a controller
e <bsp:goto> element for a controller.

navigation->goto_page

With goto_page, there is a redirect to the specified page (or to the controller), that is, the
browser is informed that it may request a different page. There is then a new browser request to
the destination page.

This has the following effect:

e The browser recognizes the URL for the destination page, since it requested it itself. In
the page does not run in a frame, its URL is displayed in the address line of the
browser.

e An additional browser request is required, which leads to increased network load. Even
if the amount of data is extremely small, this may slow down performance with very
slow networks (such as via satellite).

e In a stateless case, all temporary data from previous processing is lost.

<bsp:goto> Element

With the <bsp:goto> element, the new controller or view is called to provide the content for
the current request.

This means that:

e The browser does not recognize the URL for the destination page, but tries to
communicate with the existing page.

e No additional browser request is required.

e If no target has been entered in the form of the target page, the request that results
from sending the form (or also from a refresh) is sent to the requesting page. As a
result, the target page only has the task of creating the HTML (view) and does not
usually have to worry about input. The calling page is responsible for this and thereby
takes over the controller functionality.

e The work process does not change, that is, the context remains the same even in a
stateless application and you can therefore access the data and objects that have
already been created.

e The controller must be able to use the input to decide on its current "status" if it should
display several views after each other. It should not store this status on the server,
otherwise the "Back" processing would not function correctly. With different URLS, this
is easier using redirects.

e When you use different views, the URL does not change. As a result, you cannot use
bookmarks on these pages.

What does page_name point to?

runtime->page_name always points to the externally addressed page or the controller. You
get the name and URL using page->get_page_name() or page->get_page url().

Lifetime of the View that is Called

The lifetime of the view that is called is limited to the call only. For more information, see
Lifetime and Note 545847.

Lifetime m

Controllers

You determine the lifetime of components or their controllers in the usual way using the
Properties tab page of the controller. You can specify the lifetime as one of the following three
options in Status:

e To page change
e For the duration of the request
e For the duration of the session

The setting is usually To page change.
By default, the lifetime of controller instances is limited to the one call. If the controller instance

is passed with id, then its lifetime is the same as that specified in the controller’s properties
(Properties tab). The id can be specified as follows:

e From apage oraview: <bsp:call/goto comp_id = "id">
e From a controller or a page event: create_controller(.controller_id=“id“)

A

The controller_id or the comp_id of the <bsp:cal I> element
must not contain an underscore (‘_).
The underscore is reserved as a separator between controllers.

The lifetime of the top-level controller ranges from the first CREATE_CONTROLLER for a sub-
controller to DELETE_CONTROLLER for the sub-controller.

If sub-controllers should occasionally be hidden, so that they are not involved in event handling
for a while, then use method CONTROLLER_SET_ACTIVE. A controller that is set to inactive in
this way will not be called for input processing.

4

The controller is only hidden; the controller instance is not deleted.

Views

A

This section concerning the lifetime of views concerns the use of MVC
in SAP Web AS 6.20 up to and including Support Package 9.

Unlike controllers or pages, views have only a very short lifetime. Their life cycle looks as
follows:

They are created.

They are supplied with parameters.

They are called.

They are now no longer required and therefore expire, since views cannot be reused.

PobE

Views therefore only exist for the duration of the call, that is, they are destroyed
after they have been called.

As a developer of BSP applications with MVC, you must explicitly recreate the view, since you
cannot reuse it in a controller. The following provides an example of correct and incorrect
coding:

Use: Do not use:

DATA: view TYPE REF TO DATA: view TYPE REF TO

if _bsp page. if _bsp page.

view = create_view(view_name = IF view IS NOT BOUND. " or 1S NOT
"main.htm®). INITIAL.

view = create_view(view_name
= "main.htm").
ENDIF.

A

In any case, the view must be explicitly recreated before it is used.

DATA: view TYPE REF TO if_bsp_page.
view = create_view(view_name = 'main.htm").
" ... set attributes

call_view(page).

CLEAR view.

Data Binding =

To make programming easier for you with the MVC design, the framework for the model of an
application provides you with basic class CL_BSP_MODEL, which you can use in your own
model class as a class that passes on its properties. The model class represents the data
context of your application and, as a result, receives a copy of the data (or references to the
data) that are relevant for the view from the database model.

The model class provides:

The data that are used for the views, with the corresponding type and data Dictionary
information.

Input conversions

Information about input errors that occurred for which data
A controller can instantiate a model class or even several model classes (see also Calling the
Model Class Using the Controller). The controller has a list of all model instances, analogous to
the list of sub-controllers.

The controller assigns unique IDs to each model instance.

3

If you are using the MVC Design Pattern, you do not need to use the &
Application Class. Instead of the usual application class with purely page-based
BSP applications, you should use controllers and model classes in the MVC
environment.

Data binding is particularly important with HTMLBextension elements inputField and
label (see also the documentation for these elements in the system). It is also implemented
for HTMLB elements dropdownL istBox, radioButtonGroup, checkbox, textEdit
and tableView.

A model class can either be designed quite simply or it can be used with more complex
application cases.

Simple Model Class

Data binding is important for transmitting values for output data. Add the data that is required
by the view to your model class as attributes. These attributes are all from the visibility range
public and can be as follows:

Simple variables
1. Structures
2. Tables
In the most simple case, the model class has these attributes only and so can easily be used for
data binding as part of a BSP application.

This type of simple model class provides the following functionality:

The controller can create a model instance and initialize the attributes, since they are public
attributes.

The controller transmits a reference to the model instance to the view.

The data binding to the model is specified in the view for each view element using a path
expression (//...).

-
=
Example:
A BSP application contains an input field that is implemented using HTMLB, in
which users can write data.
model is defined as a page attribute. For the input field you can then write:
<htmlb inputField .. value="//model/<Attribut>"
This ensures that the content of value is bound to the corresponding attribute of
the model class.

The process flow is now as follows:

1. The content of the attribute is assigned to the input field value using the above
statement.

2. This generates the ID from the model.

3. Additional attributes are also generated, for example, one that determines whether
fixed values exist.
User input is transferred to the model class at the next request.

5. Data conversions including connection to the Dictionary (conversion exists, for
example) are automatically executed by the base model class.

In the default case, if a conversion exit for a field exists in the ABAP Dictionary,
this conversion exit is called. All data contained in the ABAP Dictionary structure
for the field are available. If, however, separate setter/getter methods (see the
following section) are written, the conversion exit can be switched off.

If necessary you can also add your own methods to your model class for further processing
attributes.

Complex Model Class

It is possible that simple model classes are not sufficient for your requirements. This may be
the case, for example, if you are working with generic data or if you need special methods for
setting (SET) and getting (GET) attributes. You can therefore use these methods to determine
your own implementations that are important for your specific application.

In these types of applications, the base class contains copy templates for the setter and getter
methods: SET <attribute>and GET <attribute>. All of these templates begin
with _. The naming conventions for the actual methods are as follows:

tsull3

Naming convention for setter methods:

SET <attribute> for afield
SET_S <attribute> for a structure
SET T <attribute> for atable

5113

Naming convention for getter methods:

GET_<attribute> for afield

GET_S_<attribute> for a structure

GET_T_<attribute> for atable

_p

=

An example of implementing a getter method for structure fields/structure
attributes:

method GET_S_FLIGHT .
field-symbols: <I_comp> type any.
assign component of structure flight to <l_comp>.
value = <l_comp>.
if component eq 'CARRID".
translate value to lower case.
endif.
if component eq 'CONNID".
shift value left deleting leading '0'.

endif.
endmethod.

The ABAP keyword assign component assigns the structure component
component for the structured field £l ight (with reference type sflight) to the
field symbol <1 _comp>. The value of <l _comp> is output as follows: If the
structure component component points to an airline (CARRID), the name of the
airline is translated in lowercase. If the structure component component points to
a single flight connection (CONN D), then some of the introductory zeros may be
deleted.

As soon as a setter or a getter method is set, it is used automatically.

Data binding is automatically available because the name is the same. In method
DO_HANDLE DATA (see also Process Flow) of class CL_BSP_CONTROLLER2 all controllers
automatically fill the form fields with data.

The path specifications for the model data have the following syntax:

Simple field attribute
value="//<field name>"

Structure attribute
value=""//<structure name>.<field name>”

Table attribute
value=""//<table name>[<line index].<field name>”

Calling the Model Class by the Controller m

Uses

A model class is called or managed by a controller, that is, a controller can hold one or several
model classes (or instances). The controller class provides methods for creating, getting, setting
and deleting this type of model class. There are also methods for passing incoming data on to
the correct model instance, which is identified by the model _id.

Components &=
Use

Complex BSP applications that are based on the MVC Design Pattern have many extensive
components. Each individual part, consisting of a complex BSP application, contains precise
application logic and well thought out presentation logic. It makes sense to create the
individual BSP components as reusable modules. These reusable modules are:

e Controllers
e One or more views

e A Model

Together they form a component.

A

Components are only available for stateful BSP applications.

Integration

The use of components is integrated in the MVC design pattern.

Prerequisites

You are in SAP Web AS 6.20.

Functions

A component consists of a controller, whose class is derived from CL_BSP_CONTROLLER2, as
well as one or more views, which can result in regular nesting. This is outlines in the following

graphic:

BSP View

BSP Controller

aptanndiioyg

BSP View

BSP Controller BSP View

aptanndiioyg

Central features of components are:

1. e With components, there are complex call sequences during an HTTP request.
2. e Theindividual parts, of which a page in the browser consists, are dynamically
assembled during runtime.

3. e One component can call a different component. It should therefore be placed in a
view. This is done using the <bsp:cal I> element.

1. e |Initialization can be called by the controller using method create _controller.
This method is available for all controller classes. It creates a controller or finds an existing
one.

e The parent controller contains a list of the individual sub-controllers and forwards all input
to the relevant controller. This is done by prefixing all IDs with the path of the controller
IDs.

e The controller has a hierarchical tree. Every controller controls its view or views, its
model as well as the list of sub-controllers.

e Basis class CL_BSP_CONTROLLER2 controls the sub-controllers. The controller
developer is responsible for controlling the view and the model.

4

If you want to use data binding functionality, you can add a model class to your
component. For more information see Data Binding.

Activities
1.
1 1. Creating the top-level controller
2 2. Creating a Component
3 3. Calling the Component
4 4. Determing the Input Processing

Process Flow m

Uses

The methods of class Class CL_BSP_ CONTROLLER?2 are used to create components as part
of the Model View Controller design pattern.

4

The whole hierarchy level is processed with every request.
The hierarchy itself is defined at output.

Process

1. Firstcall DO_INIT.
2. Then call DO_INITATTRIBUTES.
3. Then call DO_REQUEST.

With a main controller, DO_REQUEST takes care of both input and output
processing.

a.

Input processing

The browser request is sent directly to the top-level controller. This
dispatches the input to the sub-controllers. Service function
DISPATCH_INPUT is available for this.

DISPATCH_INPUT reads the form fields from the request and
dispatches them to the sub-controller. Prefixes are added to the form
fields.

&

The prefixes are written automatically for BSP elements, for example,
by BSP extension HTMLB.

If, however, you have pure HTML or HTML tags, then you must add the
name of the controller as a prefix to your input data. In this case,
service function GET__ID is available for adding prefixes.

All data that do not belong to one of the sub-components must be
processed using method DISPATCH_INPUT in the main controller.
The following methods are called:

= DO_HANDLE_DATA
» DO_HANDLE_EVENT
= DO_FINISH_INPUT

These three methods are called by the parent controller only with the
form fields for the current controller.

a. Output processing

Determining output processes contains the output for the next page. A
view is created and displayed. Depending on the status of the top-level
controller, you can also set a sub-controller to inactive or create new
controllers.

The process flow of the output is displayed in the following graphic:

Page Output

Main Cantraller

Controllerl

- Viewl

—+{ DO_REQUEST

Sub-Controller

Controllert

DO_REQUEST

-

Sub-Controller

Controller?

L

Viewl

Sub-Controller

Controllert.q

DO_REAUEST

View?

DO_REQUEST

At output, DO_REQUEST carries out the following tasks:

or from the global attributes.

ii. DO_REQUEST fetches the table with the object keys from the top-level

controller.

< =

V. DO_REQUEST calls the view.

Handling events

If a component contains events, DISPATCH_INPUT calls the HTMLB manager. The HTMBL
manager collects the relevant information, including the ID, that is, the ID of the object that

triggered the event.

DISPATCH_INPUT then calls method DO_HANDLE_DATA. DO_HANDLE_DATA is called by all
controllers (that is, for all active components), that is, by the top-level controller as well as by all
sub-controllers. The model class is filled with DO_HANDLE_DATA (see also Data Binding): The

DO_REQUEST requests a view.
DO_REQUEST sets the correct attributes for the view.

system transfers form fields and messages for the global messages object (see below).

4

If your model class is based on CL_BSP_MODEL and you have defined
your setter and getter methods accordingly, the form fields are filled

automatically.

The process flow with DO_HANDLE_DATA is displayed in the following graphic:

Page Input (DO_HANDLE_DATA)

Viewl.1

i. DO_REQUEST determines whether data must be fetched from the model

Controller1

% FILL_WALUES
Controllerd HANDLE_EVENT
o T FINISH_INPUT_PROCE . Controller1.1
I: DISPATCH_INPUT |— DO_HANDLE DATA FILL_YALUES
S LR BT DO_HANDLE_EVENT HANDLE_EVENT
AR BT DO_F INISH_INPUT F INISH_INPUT_PROCE .
DO_F INISH_INPUT DO_HANDLE_DATA

DO_HAMDLE_EWVENT

Controller2 DO FINISH IWPUT
_— FILL_WALUES

HANDLE_EVENT
FINISH_INPUT_PROCE .
DO_HANDLE_DATA
DO_HANDLE_EYENT
DO_F INISH_INPLUT

Once DO_HANDLE_DATA has filled all data, method DO_HANDLE_EVENT is called for the
controller that is responsible for the input event. This also states the event ID and the event is
dispatched to the controller. DO_HANDLE_EVENT also outputs parameter GLOBAL_EVENT (a
string). If the event is an HTMLB event, object HTMLB_EVENT is filled accordingly.

4

Events are only dispatched to the relevant controller if the element ID
was assigned to the HTMLB element (attribute 1d).

DO_HANDLE_EVENT also has access to the global messages object and can carry out additional
steps if necessary. For example in the case of an error, this method can have data displayed
again.

The process flow with DO_HANDLE_DATA s displayed in the following graphic:

Page Input (DO_HANDLE_EVENT)

Controller1
FILL_WALUES
=] HAMDLE EWVENT

Controllerd
o T FINISH_INPUT_PROCE . Controller1.1
I: DISPATCH_INPUT |— DO_HANDLE DATA FILL_YALUES
S LR BT DO_HANDLE_EYENT HANDLE_EVENT
DO_F INISH_INPUT FINISH_IMPUT_PROCE .

00 HAMDLE _EWVEMT
00 FINISH_IWNPUT

DO_HANDLE DATA
DO_HANDLE_EYENT

Controller2 DO_F INISH_INPUT
FILL_VALUES

| HANDLE_EVENT

FINISH_INPUT_PROCE .
DO_HANDLE_DATA
DO_HANDLE_EYENT
DO_F INISH_INPLUT

4

Note that only a sub-controller is called here.

Method DO_FINISH_INPUT is always called (for every controller, that is, for all active
components). You can use it to react to events in a component that occur in a different
component. To do this, use parameter GLOBAL_EVENT, which is set in method
DO_HANDLE_EVENT. Using this global event, at the end of input processing each component
should know exactly which events are present and how to react to them.

The process flow with DO_FINISH_INPUT is displayed in the following graphic:

Page Input (DO_FINISH_INPUT)

Controller1
FILL_WALUES
HAMDLE EWVENT

Controllerd
SR —% FINISH_INPUT_PROCE . Controller1.1
I: DISPATCH_INPUT |— DO_HANDLE DATA FILL_YALUES
S LR BT DO_HANDLE_EYENT HANDLE_EVENT
DO_F INISH_INPUT FINISH_IMPUT_PROCE .

00 HAMDLE _EWVEMT
00 FINISH_IWNPUT

DO_HANDLE DATA
DO_HANDLE_EYENT

Controller2 DO_F INISH_INPUT
FILL_VALUES

HANDLE_EVENT
| FINISH_INPUT_PROCE .
DO_HANDLE_DATA
DO_HANDLE_EYENT
DO_F INISH_INPLUT

Global Messages

Parameter GLOBAL_MESSAGES is shared by all components. Use this parameter to handle
incorrect user input, for example to display that an error occurred, or that the end date entered
by the user is before the start date, and so on.

The main controller creates the global messages and forwards them to all sub-controllers. On
the other hand, the @messages object is local. If the local messages object is now filled in a
controller, then you can forward this information to the global messages object and react to it
using any component you like.

Controllers and Their IDs

Usually there is a main controller, a top-level view as well as different sub-controllers and
additional views.

A main controller first calls CREATE_VIEW, then SET_ATTRIBUTE for the view, and then
CALL_VIEW. The top level controller can also create sub-controllers. This is done using the
<bsp:call> element, which has the attributes PAGE and COMP_ID. Furthermore, the
embedded element <bsp : parameter> can also specify parameters for name and value.

Main Controller

View(
ControllerCi
il =html=
DO_REQUEST = =Torm=
| =fhtml=
Sub-Controller
ControllerC1

DO_REQUEST | viewl

L J

Sub-Controller
Controller1.1

DO_REQUEST|—#| Viewl.1

=<bsp:call page="subcontrolleri. htm”
comp id=EE1 "=
=hsp:parameter name = ¢’
value= *.° =
= thsp:call=

The attribute output takes place either in the view or in the top-level controller.

3

COMPONENT _ID always identifies the controller. The COMPONENT _1D
has a reference to the controllers concerned.

In method CREATE_CONTROLLER this reference is parameter
COMPONENT_ID, and in the <bsp:call> element it is attribute
COMP_ID:

When a controller is created, a reference is sent to the parent
controller, which has a list of all the sub-controllers that belong to it.
Every sub-controller can query its parent controller for the COMP_ID of
each additional sub-controller.

Creating Your Own Components @

Uses

You create components to use them independently as well as together with other components
for BSP applications. You can create a component for a search in an online shop, for example,
and create an additional one for the detail display of the article that was found.

When you develop components, you can also form teams, so that one team is responsible for
developing controllers, a different team is responsible for the views, and a third team is
responsible for developing the models.

Process

Create the top-level controller
Create a component
Call the component

Determine the input processing

N E

Creating the Top-Level Controller m

Procedure
1. Create a BSP application and declare it as stateful.
You can find the checkbox for stateful on the Properties tab page as the ID Stateful.

2. Save your BSP application.
3. Create a controller within this BSP application.

a. Enter a unique class name for the controller.
b. Set the lifetime in the Status field to Session.

4. Save your controller.
5. Double-click on the controller class hame.
6. The following dialog box asks if you want to create the class. Answer it with Yes.

You branch to the Class Builder.

7. Save your class.

8. On the Properties tab page, check that your class inherits properties from
CL_BSP_CONTROLLER2. If this is not the case, for example if your class inherits
properties from CL_BSP_CONTROLLER, then change the data for the class that
passes on the properties.

9. Branch to the Methods tab page.

a. In change mode, overwrite method DO_REQUEST using the icon f(Redefine):

method DO_REQUEST .
data: main_view type ref to if_bsp_page.

* if input is available, dispatch this input to subcomponent.
* this call is only necessary for top-level controllers.
* (if this is not a top-level controller or no input is present,
* this call returns without any action)

dispatch_input().

* if any of the controllers has requested a navigation,
* do not try to display, but leave current processing
if is_navigation_requested() is not initial.
return.
endif.

* output current view
main_view = create_view(view_name = 'main.htm").
call_view(main_view).

endmethod.

b. If necessary, overwrite method DO_INIT.
c. Inorder to react to user input, overwrite methods DO_HANDLE_DATA and
DO_HANDLE_EVENT.

10. Activate your class.
11. Create a view within your BSP application.

a. Inthe following example, the view is called main.htm.
b. Fill the view layout with HTML coding or HTMLB coding.
c. Save the view.

12. Activate and test your finished BSP application.

Continue by Creating Components.

% Creating Components m

Procedure
1. Create a controller (including classes) in a BSP application.

This controller may belong to an already existing BSP application or it can be located in
its own BSP application.

A

Note that the basic class of this controller and the top-level controller is class
CL_BSP_CONTROLLER2 (see also Creating Top-Level Controllers and Views).

2. If this controller should always be used as the component controller, then change
method DO_REQUEST so that only views can be displayed. If not, DO_REQUEST would
look exactly the same as the DO_REQUEST from the top-level controller.

a. Overwrite methods DO_HANDLE_DATA, DO_HANDLE_EVENT and/or
DO_FINISH_INPUT.
These methods are called by the parent controller only with the form fields for
the current controller. All components share parameter GLOBAL_MESSAGES.
GLOBAL_MESSAGES is used to handle incorrect input.
Parameter GLOBAL_EVENT is set by method DO_HANDLE_EVENT and is used
in DO_FINISH_INPUT. The component developers should device how these
values should be set.
Methods DO_HANDLE DATA and DO_FINISH_INPUT are called for all active
components. DO_HANDLE_EVENT is only called by the controller that is
responsible for the input event.

b. For every attribute that should be passed to this controller, create a public
attribute or a method.

1. Create one or several views.
2. Activate the views.

Continue by Calling the Components.

Determining Input Processing =

Use

The browser sends its request to the top-level controller. This main controller dispatches the
input to the appropriate sub-controller. This is why it is necessary to call method
DISPATCH_INPUT in the top-level controller.

Procedure
Input processing consists of three steps:
1. Filling data

For every controller, method DO_HANDLE_DATA s called with a list of form fields that
should be handled by this method.

If an error occurs during the data conversion, then this method can also pass one or
more messages to the global error object (global_messages).

2. Handle event

Method DO_HANDLE_EVENT is called for exactly one controller. The event is passed on
and object htmlb_event is filled if it is an HTMLB-event. Method DO_HANDLE_EVENT
has access to object global _messages, in order to determine the additional steps
that are necessary, depending on the error. For example, in the case of an error, you
can specify that you want to display the data again. You can also set a global_event
using method DO_HANDLE_EVENT.

3. Finish input processing

For every controller, method DO_FINISH_INPUT is called with a global event,
which is set by the event handler method. The closing input processing is
carried out here.

Class CL_BSP_CONTROLLER2 m

Overview

Class CL_BSP_CONTROLLER?2 is used to create controllers and components. Every controller
class automatically inherits all methods and attributes from this central basic class.

3

If the basic class of your controller class displays
CL_BSP_CONTROLLER instead of CL_BSP_CONTROLLERZ2, change the
inheritance hierarchy accordingly.

Class CL_BSP_CONTROLLERZ2 enables you to:

e Retain a list of sub-controllers

e Create unique IDs for the sub-controllers, where the sub-controller is assigned the
controller ID prefix

e Use models

e Forward data to the correct controller as well as fill model classes (if they exist)

Methods

Below you can find an overview of all methods in a controller class. Processing Process
provides details on the most important methods.

The individual methods can be separated into different categories:
Functions where overwriting is required

DO_REQUEST is the central method in a controller class.

A

You must overwrite this method.

In DO_REQUEST you specify the request processing, that is, this method is called for every
request. This method does the "main work"; in particular it should branch to the correct view.

DO_REQUEST can be used in two different areas:

e Ifitis the top-level controller of a component, then this method handles both input and
output processing.

e Ifitis a sub-controller of a component, then this method only handles output
processing.

Functions where overwriting is recommended

You should overwrite these methods in order to determine input processing.

Method Description

DO_HANDLE_DATA Reacts to user input.
Processes data input for this component.

DO_HANDLE_EVENT Reacts to user input.
Processes events if the component contains them.

Exactly one view controller is called to handle the
event, which contains an event such as a save
button, for example.

DO_FINISH_INPUT Ends the input processing.

Functions where overwriting is possible

You can overwrite these methods in order to determine input processing.

Method Description

DO_INIT This method is called once at the start and is used
for initialization.

This method behaves like a constructor method.

DO_INITATTRIBUTES This method is called with every request and is used
to initialize the attributes. The parameters are read
from the request. In this method, you can also

execute initializations that are required for each
request.

You can also use this method to set additional
attributes. This method is not absolutely necessary,

since you can use DO_REQUEST to solve everything
that you can (theoretically) handle here.

Service functions

You can call these methods:

Method Description

CREATE_VIEW Creates or fetches a view instance

Use either the name of the view, or the @0 bject
navigation.

&

A view must always belong to the same BSP
application as its controller.

CALL_VIEW Calls the request handler of the view instance.

CREATE_CONTROLLER Creates or fetches a controller instance

CALL_CONTROLLER

GET_ATTRIBUTE

GET_LIFETIME

GET_PAGE_URL

SET_ATTRIBUTE

SET_LIFETIME

TO_STRING
WRITE
GET_OuUT

SET_MIME_TYPE

INSTANTIATE_PARAMETER

SET_CACHING

DISPATCH_INPUT

Calls the request handler (method DO-REQUEST) of
the controller instance.

Returns the specified page attributes.
Generic method for reading an attribute value.

Returns the lifetime of this page (only for the top-
level controller)

Returns the URL of the page or the current controller

Sets the specified page attributes.
Generic method for setting an attribute value.

Changes the lifetime of this page (only for the top-
level controller)

Creates a formatted string
Writes a formatted string in the output
Fetches the current output writer

Changes the MIME type of the page or the content
type of the header field

Instantiates the parameter from the request using
the request data

Changes the caching values
There are two types of caching:
e Browser cache

e Server cache

See also @Caching BSPs.

&

You can only use limited caching here.

Note that the server cache is not user-specific.

If you change the page, you should reset the cache
that may be set.

Dispatches the input processing (only for the top-
level controller).

For each input, DISPATCH_INPUT calls the correct
methods in the correct sequence.
This method fetches data from the request.

4

This method does not have any attributes.

GET_ID Calculates the ID from the specified ID and the
component ID

SET_MODEL Creates and registers a model instance

CREATE_MODEL Creates and registers a model instance

GET_CONTROLLER Fetches a sub-controller

CONTROLLER_SET_ACTIVE Sets a controller to active/inactive.

This is relevant with input processing, since you can
use it to hide a controller.
See also Lifetime

DELETE_MODEL Deletes a model instance

FILL MODEL_DATA Fills the model data

DELETE_CONTROLLER Deletes a sub-controller

GET_MODEL Fetches a model instance

IS_ TOPLEVEL Is this controller a top (main) controller (0: no, 1:
yes)?

IS_NAVIGATION_REQUESTED Has)g controller requested a navigation (0: no, 1:
yes)~

Framework functions

These methods are provided as part of the framework and are only included here for the sake of
completeness. They are not usually relevant for application development.

Method Description
IF_BSP_DISPATCHER~REGISTER Registers a sub-components

IF_BSP_CONTROLLER~FINISH_INPUT_PROCESSING | Processes or dispatches: end of input

processing.
IF_BSP_CONTROLLER~FILL_VALUES Processes or dispatches: handling values
IF_ BSP_CONTROLLER~HANDLE_EVENT Processes or dispatches: Handle event
GET_FIELD_COMPONENT Finds components for a field name

GET_FIELD_MODEL Finds model for a field name

4

Methods DO_DESTROY and SUBSCRIBE are not relevant.

Previous BSP Application

With SAP Web AS 6.10, normal BSP applications usually consisted of an application class and
several BSPs. Navigation between the pages was controlled using redirects.

BSP Application

Application
Class

Mavigation
using Redirect

This is how it looks with SAP Web AS 6.20: BSP Application with Controllers and Views

:T BSP Application with Controllers and Views
aal

From SAP Web AS 6.20, you can combine controllers and views in a BSP application. You
navigate between the controllers and any pages that exist using redirect. Each controller can
have one (or several) model(s).

You can use redirect to navigate between the controllers. You call the views using a call.

BSP Application

Application
Class

Contraller 2 -,

Z
{ M odel 2 l }
/ Mawigation

!
Corntraller 1 = - Wienw 2 1'| sing Fedirect
™
\]
M odel 1 \ |
] | \ Controller 3
Wie 1 | i
\ - Model 3 l
kY !
Y A Wigw 3

With several views for a controller, the whole thing looks as follows: BSP Application with
Several Views per Controller

BSP Application with Several Views per Controller &

With a BSP application with controllers and views, an individual controller can also call several
views — either sequentially after each other or alternately. With this example, you always
access it using a controller.

BSP Application
Class
Yiew 1

Controller

Mod &

View 2

What does a combination of these two examples look like (this one here and BSP application
with controllers and views)? Like this.

:? Combination of the Previous Examples m

You can combine the examples of a BSP application with several views per controller with a
BSP application with controllers and views so that each view is controlled by exactly one
controller. Central distribution is carried out by a superior controller.

BSP Application
Application
Class
Mod el
Controller
Caortraller 3
Controller 1 Y
Cartraller 2 hodel 3
Madel 1
Model 2 Wi 3
Wien 1
Wiewy 2

Does this also work with several BSP applications? Of course!

Calling Controllers of Other Applications m

You can also call controllers of other BSP applications:

BSP Application 1

LTM BSP Application 2
Class

Model
Controller
Caontraller ¥
Caontroller 1 Controller 2
il odel X
M odel 1 model 2
WiE
Wiewy 1 Wiewy 2

:_l' Calling Several Controllers from a View =

With this example, several controllers are called from a view using a BSP element.

3

There can also be a page in place of the calling controller and view (in
the graphic on the left-hand side). There cannot be a page, however, at
the level of the called areas (in the graphic on the right-hand side).

With help from the views that are allocated, these controllers provide the contents for a sub-
area of the main views. A reference to the model can also be specified with the call.

BSP Application

=bsp:call URL="ControllerI1®=

SITEPE PEFTIELET LA LEn Controller 11
Yalue="-%=Hode 11%=""/=
=/bsp:cal 1= _ l
W ien |1
Controller 1
Cantraller 12

Componert - l
Component2 -

Wieny |2

|
H[Fl]' Model View Controller Tutorial =

Uses
In this tutorial you can use a simple example to run through the first steps with the @Model
View Controller design pattern for BSP.

Prerequisites
® You are in an SAP Web AS 6.20 system

e You know how to use @\VC for BSPs

Functions
Creating a Controller

Creating a View

Calling a Controller

% Creating a Controller m

Prerequisites
You have created an empty BSP application for this tutorial.
Procedure

1. Create a controller within your BSP application.

To do this, choose Create — Controller.

BSP Application Bl

Frive v | @
BRI ES =R S
Qhject Harme Descriptinn
= m_mm 'hndal View Cantraller Te
[Create | BSP Application
b Change Cantroller
b C Display * Page
Check MIME Qhject
Activate Theme
Test
Copy...
Delete
Aszsign Theme
Transaction Wariants: Other Features ¢

2. On the following dialog box, give the controller a name and add a short description.

w01

example.do

Test cantralled

Y%

3. Choose ¥.
4. On the following screen, assign a class name to the controller.

The class does not have to exist yet.

Test contraller
c1_hsp_mymvctest

5.

10.

You navigate to the Class Builder by double-clicking on the controller class.

If the class does not already exist, the system asks you if you want to create it. Choose
Yes so that you create a class with the specified name that is derived from
CL_BSP_CONTROLLER?2.

3

Each controller class must be derived directly or indirectly from
CL_BSP_CONTROLLER?2.

Choose the aﬁsymbol to branch to the change mode in your class.
Class intetface CL_BSP_MYMVCTEST Implemented § Active

FProperties k Interfaces k Friends k Aftributes | Methods k Ewvents k Interna

[k Parameters" bl Exceptions | B |r| ||§'_?||d"—>| E. = %l[ﬁlﬁ r| [H]IIHI @
methods Leve| . |Description

DO_INIT Insta...F‘ub... |:| Initialization

DO_INITATTRIBUTES Insta.|Fub.| [] Initialization of attributes

DO_REQUEST Insta.Pub.| | | Request pracessing |

Select method DO_REQUEST and choose symbol & to overwrite the methods.

Generate the required output.

In this example, it is simple HTML:

method DO_REQUEST .

write('<htmI><body><H1>").

write("This is my very first controller").
write('</H1></body></html|>").

endmethod.

Activate your class and your BSP application.
Before you can test the controller, in Transaction SI1CF you must also activate the new

entry that was automatically created for your BSP application (see also @Activating
and Deactivating an ICF Service).

In Transaction SICF, select the entry for your BSP application and choose
Service/Virt.Host — Activate.

wiceMifual Host Edit Goto Systern Help

e Create Virual Host g H S O E ST AR EE
Y Create Service FT
| DisplayiChange F&
L AgtivEg ShifteF11 Jl aliases
Deactivate Shift+F12
E Aliased by
i) Docu. Refs
. +
b Lelete Sl VIRTUAL DEFAULT HOST idefaL
Exit Shift+F3 SAP MAMESPACE: SAP 1S OBLIGED NOTT...
[(= option RESERYED SERVICES AVAILABLE GLOBA. .
B @) public PUBLIC SERVICES

BASIS TREE (BASIS FUNCTIONS)
BUSINESS SERVER PAGES (BSF) RLIMNTI...
MAMESPACE SAP

ahsenceform_new

alertinbox alertinbox application

(8 [rve_tesd MYC Test

. plm_pdn_wui Weh Interface for IPPE

cvaw_entire DOCUMEMNT@EWER EMTIRE APPLICATION

Confirm the following confirmation prompts.

11. You can now test the new controller page that you have created.

Result

; http: / f1z0028 wdf_sap-ag.de:1080/zap[bD1lbg==)/bc/bzp/zap/mvc_test/example.do?sap-client=000 -

J File Edt “iew Favorites Toolz Help
. =
S S A 24+ |
Back Earward Stop Refresh Home b ail Frint Edlit
J Address @ hittp: 4 A120028 wdf . zap-ag.de: 1080/ 2ap(b01 bg==)/bz/bzp/zap/mvi_test/example. do?zap-client=000

a G 3

Search Favortez Histom

This is my very first controller

Continue by creating a view.

% Creating a View ®=

Use

If you do not always want to use the write function to create the HTML page content (as
described in Creating a Controller), and you want to create it as pure HTMLO layout instead,
then create a view that you can call from the controller.

Procedure
2.

5. 1. Begin asif you are creating a normal page with flow logic in your BSP application.

To do this, choose Create — Page.

BSF Application

‘Object Nama
i Change

BEP Application L

Crisplay
Chack
Activate Theme
Test

Copy...

Delete

Assign Theme

Transaclion Varianis. Olher Fealures k

6. 2. Inthe following dialog box, enter a name and short description of the view and

select View as the page type:

Zrmwe_tut
wiews_testhtm
fayaul for contrallar

' Page with Flow Logic
" Page Fragment

v %

7. 3. Choose ¥.
8. 4. Create the attributes for the variable parts of the view.

4

You cannot define auto-page attributes, since views cannot be called directly from the
browser.

Create the following attribute:

FPage view_testihim
Properfies | Lsyout Page Afibutes | Preview |
FFIEEENE

 |attribute [Typing lassociated Type
| ame TYPE [STRING

5. Define the layout as usual:

<%@ page language="abap" %>
<html>

<head>

<link rel="stylesheet" href="../../sap/public/bc/bsp/styles/sapbsp.css">
<title> Layout for Controller </title>
</head>
<body class="bspBody1">
<H1>View Example</H1>
<H3>Hello, user <%= name%></H3>
</body>

</html>

10. 6. Activate the view.
11. 7. Finally, adjust the DO_REQUEST method to the controller class.

Here, the schema is always the same. First you create the view, then you set the
attributes, and then you call the view. (For the time being you can ignore the warning
concerning exception CX_STATIC_CHECK, or you can set a try-catch block around

the calls):

method DO_REQUEST .
data: myview type ref to if_bsp_page.
myview = create_view(view_name = 'view_test.htm").

myview->set_attribute(name = 'name’ value = sy-uname).

call_view(main_view).

endmethod.

12. 8. Activate your class and test your controller.

Result

You have created your own view for the layout.

-al ayout zum Controller - Miciosoft Internet E sploner

Fle Edt %iew Favontes Took Help -

SRl e D O A a & 3 B 5 .

Stop Refiesh Home Search Favodites History M il Pririt Fi

| Addresz |ﬁ-] htkp: # Mz 0028 wdt sap-ag.de: 1080/ sapdb0 1 lbg==]/be/beps sap'mve_test/enample. do?zap-clent=000 :I ('}ED ! Links
- - L]
View-Beispiel
Hallo, Benwtzer GREEBEL
2] Done || T Local inranet 7

Continue by Calling the Controller.

i
% Calling a Controller m
Use
You can call a controller from a page with flow logic, or from a view.
Procedure
1. Create a page within your BSP application.
Ensure that you select Page with Flow Logic as the page type.

2. Inthe Tag Browser, select BSP extension bsp and drag it to the second line of your
BSP’s layout under the page directive.

B]Tag Browser
B Transport Organizer

All Tags B2 HE I

[> 1 HTMLBusginess Functions
[>] BSP-Directives
< [_1 BSP Extensions
=7 {4 Transportable
> [EEbenchmark

> ER htmib
> EB srm
> EBxsh

3. Now drag the <bsp:goto> directive of BSP extension bsp to the body of the HTML
layout and add the URL parameter.

The source now looks as follows:

<%@page language="abap"%>
<%@ extension name="bsp" prefix="bsp" %>
<html>

<head>

<link rel="stylesheet" href="../../sap/public/bc/bsp/styles/sapbsp.css">
<title> Initial page <f/title>
</head>

<body class="bspBody1">
<bsp:goto url="example.do"></bsp:goto>
</body>

</html>

4. You can now activate and test the page.

The page looks as follows:

<3 Layout for Controller - Microsoft Internet Explorer provided by SAP IT
J Eile Edit “iew Fawvorites Tools Help

| - - @ [& ‘Eﬁ Gd 3 | B~

== inile - FarwaEnd . Stop Fefresh Home =earch Fawvorites Histony kdail

Jﬁgdress &1 http: /{10028 wilf sap-ag.de: 1080/ sap(bD1 kZ0==)/bc/bsp/ sap/zrmsc_tutf default htm ?sap-

Example of a View

Hello, User GREBEL

|@ Done l_l_ T LF
£

Ensure that the page you have tested looks exactly the same as when you tested the
controller. The URL is different, however. You can use View Source in the browser to
see that nothing remains of the HTML text from the BSP, but that only the content of the

view is displayed:

<html>

<head>
<link rel="stylesheet" href="../../sap/public/bc/bsp/styles/sapbsp.css">
<title> Layout for Controller </title>

</head>

<body class="bspBody1">

</head>

<body class="bspBody1">
<H1>View Example</H1>
<H3>Hello, User GREBEL</H3>

</body>

</html>

5. You can now try out the difference between the <bsp:goto> element and the
<bsp:call> element.

If you use the <bsp:cal 1> element instead of the <bsp:goto> element, the calling
page text remains the same. In the view that is inserted, you should therefore delete the
HTML text available on the outline page, otherwise these texts will be transferred twice.

You can add another attribute to the controller. This is a public class attribute.

It is set using the <bsp:parameter> element. You can use it for example to control
which view is called, or this value can be passed to the view.

