
0 [image: image1.wmf]ã

SAP

AG 2002

l

Field Exits

l

Append Search Helps

l

Business Data Toolset (BDT)

l

Exercise on Field Exits

Contents:

Appendix

[image: image2.wmf]ã

SAP

AG 2002

l

Use field exits to apply checks to a screen field

At the conclusion of this topic, you will be able to:

Field Exits: Topic Objectives

[image: image3.wmf]ã

SAP AG 1999

SAP

Customer

Defining

data elements

Documenting

data elements

Defining

global

enhancements

Creating field exits

Global Enhancements

· SAP application programmers define keywords in different lengths and a short description for each data element.

· You create field exits in Project Management. Field exits are processed when the user leaves a screen that contains a field that refers to a data element containing a field exit.

[image: image4.wmf]ã

SAP AG 1999

Field Exits

ABAP Dictionary

Departure city

Arrival city

?

–

Check

FIELD EXIT

Field format check

FUNCTION

* IMPORTING INPUT *

* EXPORTING OUTPUT *

ENDFUNCTION.

FIELD_EXIT_...

FIELD_EXIT_...

MESSAGE E035(bc425).

MESSAGE E035(bc425).

· SAP lets you create a field exit for every input-ready screen field that has been created with reference to the ABAP Dictionary. The additional program logic is stored in a function module and is executed at a specific point at the PAI event.

· The slide shows the order in which processing takes place. Before the PAI event of the screen is executed, the system performs the following checks: First the system checks if all the required fields have been filled in. If a required field is empty, the screen is shown again.

· The system then checks that data has been entered in the correct format.

· Any defined field exits are executed next. For example, by sending an error message you can have the screen sent again.

· Once all the field exits have been checked, the screen is processed as normal.

· Field transport

· Foreign key check

· Processing of PAI module for screen

[image: image5.wmf]ã

SAP AG 1999

Global and Local Field Exits

Data element

GLOB

FIELD_EXIT_GLOB

FIELD_EXIT_GLOB

Data element

LOC

FIELD_EXIT_

FIELD_EXIT_

LOC_1

LOC_1

FIELD_EXIT_LOC_2

FIELD_EXIT_LOC_2

Program one

Program two

Airline

Arrival city

Arrival city

Program three

Non

-

smoker

Smoker

No preference

Departure city

Departure city

Departure city

· Field exits take you from a screen field with a data element reference to a function module. Field exits can be either global or local.

· Global field exits are not limited to a particular screen. If a global exit's data element is used on several screens, the system goes to the function module for all these screens after activating the field exit. Here you can, for example, edit the contents, force a new entry to be made by outputting an error message, or prohibit certain users from proceeding further.

· Local field exits are valid for one screen only. If you assign a screen from a specific program to a field exit, then the system will go to the appropriate function module from this screen once the exit has been activated.

· You can either create one global field exit or up to 36 local field exits for a data element, but not both.

· Each exit number refers to a different function module. Field exit function modules adhere to the following naming convention:

· Prefix:

FIELD_EXIT_

· Name:

<Data element>

· Suffix (for local field exit):
_0 to _9, _A to _Z

[image: image6.wmf]ã

SAP

AG 2002

Creating Field Exits

l

Start program RSMODPRF

l

Field exit

-

>

Create

Function Builder

FIELD_EXIT_<DE>

Function module

Create

Change

Display

Function Builder

Function module

FIELD_EXIT_<DE>

Import parameter

INPUT

Export parameter

OUTPUT

· To create field exits, choose Utilities in the ABAP Workbench. Choose Enhancements and then Project Management to edit field exits and to implement customer exits.

· With Goto -> Global enhancements -> Field exits you start the transaction for maintaining field exits. To create a new enhancement, choose the menu path, Text Enhancements -> Create.

· Enter the name of the data element to which your screen field refers in the modal dialog box. The Function Builder is started. The system specifies the name of the field exit. Do not change this name. Create the function module in a customer function group.
· The function module interface is fixed and cannot be changed. The function module has an import parameter INPUT and export parameter OUTPUT. The contents of the screen field are stored in parameter INPUT. The contents of OUTPUT are returned in the screen field when you leave the function module.

[image: image7.wmf]ã

SAP

AG 2002

Source Code for F

ield

Exits

l

These statements

are not

allowed in field exits:

l

BREAK

-

POINT

l

CALL ..., SUBMIT

l

COMMIT WORK / ROLLBACK WORK

l

STOP, REJECT

l

Message I, Message W

Source code

FUNCTION field_exit_<DE>.

...

ENDFUNCTION.

output = input.

output = input.

· In the source text, export parameter OUTPUT of the function module must be assigned a value that is transported back to the screen field. Otherwise the screen field would be initial after executing the field exit.

· The following ABAP statements are not allowed in field exit function modules:

· CALL SCREEN, CALL DIALOG, CALL TRANSACTION, SUBMIT

· COMMIT WORK, ROLLBACK WORK

· COMMUNICATION RECEIVE

· EXIT FROM STEP-LOOP

· MESSAGE I, MESSAGE W

· STOP, REJECT

· When you debug a screen that is referenced by a field exit, the field exit code is ignored by the debugger. As with any normal function module, you can, however, debug the field exit code in the Function Builder's test environment.

[image: image8.wmf]ã

SAP

AG 2002

Field exits for data elements

<Data element>

Data element

Status

inactive

Program

Global

Local Field Exits

Field exits for data elements

Field exits for data elements

<Data element>

Data element

<program_name>

1

0100

Field exit

Program name

Screen

Function Builder

FIELD_EXIT_<DE>_1

Function module

Create

Change

Display

Assign prog./screen

· You can create local field exits that relate to a specific screen. Create a local field exit. A global field exit must already exist. Edit the local field exit based on the global field exit.

· You can create up to 36 local field exits, each of which carries a unique suffix. The system proposes a name for the function module; you should use this name.

· Defining local field exits means that the function module of the global field exits initially created are no longer used. For technical reasons, however, you must not delete the global function module. The field exits in the system would be deleted if you deleted the global function module of the field exit from the list.

[image: image9.wmf]ã

SAP

AG 2002

Activating Field Exits

l

Activating function modules

Function Builder

FIELD_EXIT_<DE>

Function module

l

Activating field exits

Field Exit

Field exits for data elements

<Data element>

Data element

Status

inactive

Program

global

...

Activate

...

...

Activate

...

Create

Change

Display

· You must activate the field exit as well as the function module. Also note that field exits are only taken into account during screen execution if the R/3 profile parameter abap/fieldexit = YES has been set for all application servers. (This profile parameter is set to NO by default).

· If you declare field exits for multiple screen fields, you have no control over the order in which they are processed. In particular, you cannot access the contents of other screen fields in a field exit.

· Also read note 29377 about field exits.

[image: image10.wmf]ã

SAP

AG 2002

l

Create search helps to define your own search

paths

l

Create search helps to hide the search paths

delivered with the standard system

At the conclusion of this topic, you will be able to:

Append Search Helps: Topic Objectives

[image: image11.wmf]ã

SAP

AG 2002

Append Search Helps

Included search helps

. . .

(customer) append

search help

Included search helps

. . .

(SAP) collective search help

appends

· The set of search paths that are meaningful for an object greatly depends on the particular circumstances of the SAP customer. The customer often would like to enhance the standard SAP collective search helps with his own elementary search helps. Release 4.6 provides an append technique that permits the enhancement of collective search helps without modifications.

· An append search help is a collective search help that is assigned to another collective search help (its appending object) and that enhances it with the search helps it includes. The append search help uses the interface of its appending objects.

· The append search help lies in the customer namespace. Normally the search helps included in the append search help are also created by the customer and lie in the customer's namespace. However, the required elementary search help might already be provided by SAP, in which case, the customer only has to add it to his own append search help.

· Append search helps are used with SAP to improve component separation. Some SAP collective search helps therefore already have one or more append search helps in the standard search help. Customer enhancements should always be made by creating a separate append search help.

· SAP collective search helps often contain elementary search helps that are not required by all customers. The search helps you do not need can be hidden using an append search help. To do this, the corresponding search help must be included in the append search help and the hidden flag must be set.

[image: image12.wmf]ã

SAP

AG 2002

l

Describe the enhancement options offered by the

Business Data Toolset

At the conclusion of this topic, you will be able to:

Business Data Toolset: Topic Objectives

[image: image13.wmf]ã

SAP

AG 2002

Business Data Toolset (BDT)

l

Definition:

Toolset for master data and simple transaction data

l

Design goals:

-

Extensibility

-

Configurability

-

Divisibility

-

Alternative user interfaces

-

Usability

-

Faster development

-

Generic object services

· The Business Data Toolset (BDT) - formerly known as master data administration or business partner administration - is the main administration tool for maintaining master data and simple transaction data, either using dialogs, direct input, or function modules.

· The BDT also provides generic objects services for consistent recurring requests – such as changing document lists, field modifications, and the deletion program. The BDT manages generic parts of these objects and the objects themselves and calls the applications using predefined interfaces (control tables and events) – such as writing to and reading from the application tables in the database.

· The BDT is used at SAP to maintain different application objects. Development partners and customers use BDT interfaces to enhance these objects without modifying the source code.

· In addition, the BDT enables you to use alternative user interfaces by separating the UI from the programming logic. Generic services like direct input and field administration are provided.

[image: image14.wmf]ã

SAP

AG 2002

Development Without the BDT

Service

Service

Maintenance

transactions

Field

modification

Evaluation of

change

documents

Data transfer

Notes

Authorizations

· You need the same functions over and over again in both development and implementation projects. The SAP Web Application Server provides some service functions, but most of these functions still need to be developed.

· Field modification, change document evaluation, and screen checks from the ABAP Dictionary are examples of such services.

[image: image15.wmf]ã

SAP

AG 2002

Speeding Up Development with the BDT

Service

Service

Maintenance

transactions

Data transfer

Notes

Authorizations

Field

modification

Change doc.

evaluation

Maintenance performed centrally:

requires fewer development

resources

Maintenance performed centrally:

requires fewer development

resources

· Since the BDT controls dialog processes, the applications need only implement business functions. The BDT also provides services in which applications can be integrated. These factors considerably reduce the development time.

· The applications lose a little of their individual character but in return gain the benefits of reduced object maintenance, standardized dialogs, generic Object Services, and more rapid development.

[image: image16.wmf]ã

SAP

AG 2002

SAP BP

Appl. object

BUPA

BDT

BDT

Other

Appl. object

SAP BP

relationships

Appl. object

BUPR

Bank

account

Appl. object

BKK

IS

-

RE

contract

Appl. object

RECN

Contract

account

Appl. object

FICA

Claims

capture

Appl. object

ICL

Usability with Various Objects

· The following are just some examples of objects developed using the BDT:

· Central Business Partner
· Partner maintenance
· Relationship maintenance
· Contract Accounts Receivable and Payable
· Contract account
· IBU Banking
· Bank account
· Standing order
· Financial product
· Financial conditions
· Risk object
· Variable transactions
· IBU Insurance
· Insurance: Claims
· Insurance: Loss event
· Commissions: Remuneration agreement
· IS-RE
· Real estate contract
· Cost efficiency analysis

[image: image17.wmf]ã

SAP

AG 2002

Initial screen

After input

ISSTA

Before

output

Data screen

Before output

After input

ISDAT

ISDST

AUTH1

Before

output

Save

Back

End

Cancel

XCHNG

Changed?

Yes

DSAVB

AUTH1

DCHCK

DTAKE

DSAVC

DSAVE

No

XCHNG

Changed?

No

Save?

No

Yes

DSAVB

AUTH1

DCHCK

DTAKE

DSAVC

DSAVE

Yes

A

Cancel

.

A

XCHNG

Changed?

No

Save?

No

Yes

DSAVB

AUTH1

DCHCK

DTAKE

DSAVC

DSAVE

Yes

A

Cancel

.

XCHNG

Changed?

No

Cancel?

No

Yes

Yes

A

DLVE1

DLVE2

Start

End

DTITL

DCUAD

DCUAC

FCODE

DTITL

DCUAD

DCUAC

Events in dialogs: Save mode

Call subscreen

Call subscreen

Call subscreen

Call subscreen

Before output

FCODE

Events and Program Flow

· Within the program flow, applications can take events defined by the BDT and define their own program logic for them in function modules. These function modules can be defined for any event and are then called dynamically by the BDT.

· The starting point is a normal transaction code. This code always launches the program (BUSSTART in the Business Partner). The BDT reads all the necessary information from the control tables along with the name of the transaction code.

· The program flow is fully specified. All function modules that belong to the part of the object executed are called in the appropriate event.

[image: image18.wmf]ã

SAP

AG 2002

BDT

Development and the

ABAP Workbench

•

0010 First

contact

Screens

PBO

module

PAI

module

•

...

•

PAI

•

...

•

PBO

Function

modules

Program

logic

Events

for

each

application

Events

for

each

table

Events

for

each

view

Function

group

Function

group

...

...

..._

..._

PAI

PAI

_..

_..

..._PBC_..

..._PBC_..

..._PBC_..

..._PBC_..

...

...

Collect

Collect

GET

GET

...

...

ISDST

ISDST

ISDAT

ISDAT

ISSTA

ISSTA

· Each application develops within a separate function group.

· Screens (that is, subscreens), PBO modules, PAI modules, and function modules are created for the events (for each application, table, and view) in this function group.

· The PBO module calls only one BDT service function module to set the field attributes.

· The PAI module calls only one BDT service function module to get the cursor position.

· Program logic:

· Events for applications (reading, checking, saving data)

· Events for tables (communication between applications/function groups)

· Events for views
A) PBC - event for formatting a table (such as sorting)
B) PBO - event before output (such as reading text descriptions from Customizing tables)
C) PAI - event after input (such as checking input values)

· Note: The same code is executed in maintenance modes without dialogs (such as direct input) You need not program this code again.

Exercises

	[image: image19.png]

	Unit: Appendix

Topic: Field exits

	[image: image20.png]

	At the conclusion of this exercise, you will be able to:

· Implement a field exit that can be used to make supplementary checks of a screen field.

	[image: image21.wmf]

	The transaction that your co-workers use to display flight information (BC425_##) allows you to access data for all airline carriers. The customer service personnel, however, should only be able to access the airlines for which it has explicit authorization.

What is the name of the program for the above transaction?

1-1-1
What is the name of the data element referenced by the input field for the airline?

1-1-2
Are the requirements met for linking a field exit to this screen field?

1-2
How can you create a field exit?

1-2-1
Create a field exit for the screen field found under 1-1. Reference the corresponding data element.

1-2-2
The Function Builder is started. Can you change the interface of the Function Builder? You will need to create a function group before you continue. Create one from Object Navigator and name it ZBC425_##.

1-2-3
What do you have to code in the source text? Program an authorization check. How do you perform an authorization check? Use the authority check object S_CARRID with an activity of ‘03’.

1-2-4
If the check is negative, send a message to this effect. Use message 010 in message class BC425.

1-2-5
Activate the function module and the field exit.

1-3
Check your results.

1-3-1 For which airline(s) do you not have authorization?

1-4
Create a local field exit for screen 0100 of transaction BC425_## based on the global field exit.

	[image: image22.wmf]

	Use a second session. This is logical, especially when creating function groups in parallel.

Solutions
	[image: image23.png]

	Unit: Appendix
Topic: Field exits

	[image: image24.png]

	· Implement a field exit that can be used to make supplementary checks of a screen field.

	[image: image25.wmf]

	The transaction that your co-workers use to display flight information (BC425_##) allows you to access data for all airline carriers. The customer service personnel, however, should only be able to access the airlines for which it has explicit authorization.

1-1
The name of the program for transaction BC425_## is SAPBC425_FLIGHT##. You can get this information by choosing the menu path System (Status.
1-1-1
The name of the data element to which the input field for the airline refers is S_CARRID##.
1-1-2 You can find the screen field and its data element by going to the Screen-Painter for screen 0100 in program SAPBC425_FLIGHT##. You can see that attribute "Dictionary" is set for field sflight00-carrid in the general attributes of the element. The data element you need is S_CARRID##.

1-1-3 Create a function group Z_BC425_## from the Object Navigator.
1-2
Create a field exit using program RSMODPRF. Execute the report RSMODPRF and enter the name of the data element S_CARRID##. Press F8 to run the report.
1-2-1
The function builder is displayed with the correct name of the field exit already supplied. Do not change this name and do not attempt to build the field exit from the Function Builder!

1-2-2
The importing and exporting parameters are already defined and must not be changed. Select the tab for source code. Use the Pattern pushbutton and select the radiobutton for AUTHORITY-CHECK. Enter the value S_CARRID and press the Enter key. Complete the coding as shown.

The source text should be as follows:

 output = input.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD input

 ID 'ACTVT' FIELD '03'.

 IF sy-subrc <> 0.

 MESSAGE e045(bctrain) WITH input.

 ENDIF.

1-3
Activate the function module and all of the related function group objects. Use the menu function BACK to return to the selection screen for the report RSMODPRF. Leave both fields on the selection screen blank and press F8 to execute the report. A list of all field exits is displayed. Select your field exit and activate it with Field exit (Activate.
© SAP AG
TAW12
11-1

