
0 [image: image1.wmf]ã

SAP

AG 2002

Business

Add

-

Ins:

l

Implementing Business Add

-

Ins

l

Defining Business Add

-

Ins

l

Using Business Add

-

Ins to enhance screens

Contents:

[image: image2.wmf]ã

SAP

AG 2002

l

Extend

program functions using

Business

Add

-

Ins

l

Create Business Add

-

ins so as to make them

available to subsequent R/3 users in the

development chain

l

Implement screen enhancements using Business

Add

-

Ins

At the conclusion of this unit, you will be able to:

Business

Add

-

Ins:

Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

l

You want to add new functions to a flight

maintenance transaction.

The SAP developer has

provided a Business Add

-

In.

l

You will also define a Business Add

-

In of your own

and use it in a program.

Business Add

-

Ins:

Business Scenario

[image: image4.wmf]ã

SAP

AG 2002

Business Add

-

Ins: Overview Diagram

l

M

odification Assistant

l

User exits

l

Overview

l

ABAP Dictionary

l

Tables

l

Data elements

l

Customer exits

l

Function module exits

l

Menu exits

l

Screen exits

l

Business transaction events

l

Business Add

-

Ins

R/3 Business Applications

R/3 Business Applications

(The SAP Standard)

(The SAP Standard)

Enhancement

Enhancement

Modification

Modification

l

Transaction

variants

Personali

Personali

-

-

zation

zation

3

3

4

4

6

6

5

5

7

7

8

8

2

2

[image: image5.wmf]ã

SAP

AG 2002

Business Add

-

Ins:

Motivation

l

Disadvantages of earlier enhancement techniques

n

Could

be used

only once

(customer exits)

n

No screen enhancement (

Business

Transaction

Events

(

BTEs

))

n

No menu enhancement (

BTEs

)

n

No administration level (

BTEs

)

l

Requirements for new enhancement techniques:

n

Reusable

n

All enhancement types (program/menu/screen)

n

Administration level

n

Implemented using latest technology

[image: image6.wmf]ã

SAP AG 1999

Software Delivery Process

SAP

SAP

IBU

IBU

Partner

Partner

Cust.

Cust.

ABAP Extension:

ABAP Extension:

ABAP Objects

ABAP Objects

B

usiness

Ad

d

I

ns

SAP

SAP

Cust.

Cust.

l

Then...

l

... Now

Customer

Customer

exits

exits

[image: image7.wmf]ã

SAP

AG 2002

l

Describe an ABAP Objects interface

At the conclusion of this topic, you will be able to:

Interfaces: Topic Objectives

[image: image8.wmf]ã

SAP

AG 2002

Objects

Public

access

Private

Components

Interface

Interface

Address

Custom

er

Passenger

list

Flight

Public

Public

methods

methods

l

l

BOOK

BOOK

Public

Public

attributes

attributes

Airline

Airline

Flight

Flight

number

number

FLIGHT

FLIGHT

· A class is an abstract description of an object. Each object only exists while the program is running. In this unit, when we talk about objects, we may actually mean the abstract description (the class), depending on the context.

· An object is described by its class and consists of two layers - an inner and an outer layer.

· Public components: The public components are those components of the class (for example, attributes and methods) that are visible externally. All users of the class can use the public components directly. The public components of an object form its interface.

· Private components: These components are only visible within an object. Like the public components, the private components can be attributes and methods.

· The aim of object orientation is to ensure that a class can guarantee its own consistency. Consequently, the data of an object is normally internal, that is, represented using private attributes. The internal (private) attributes of a class can only be changed by methods of the class. As a rule, the public components of a class are methods. The methods work with the data in the class and ensure that it is always consistent.

· Objects also have an identity to differentiate it from other objects with the same attributes and methods.

[image: image9.wmf]ã

SAP

AG 2002

Instances of Function Groups as Objects

External session

Data

Data

...

Function

Function

module

module

…

Function group

1

1

Data

Data

...

Function

Function

module

module

…

Function group 2

Internal session of an ABAP program

ABAP program with

data

CALL FUNCTION ...

· Until Release 4.0, the nearest thing to objects were function groups and function modules.

· When you call a function module, an instance of its function group - with all of its data definitions - is loaded into the memory area of the internal session. An instance is a real software object. An ABAP program can therefore load instances of different function groups by calling function modules, but only one instance of each function group can exist at a time.

· The principle difference between real object orientation and function modules is that a program can work with instances of different function groups, but not with several instances of a single function group. For example, suppose a program wanted to manage several independent counters, or several orders at the same time. If we did this using a function group, we would have to program an instance management to differentiate between the instances (using numbers, for example).

[image: image10.wmf]ã

SAP

AG 2002

Classes Generalize Function Groups

…

Internal session of an ABAP program

Data

Data

...

Data

Data

...

Function

Function

module

module

…

Class m, n

th

instance

Data

Data

...

Interface

Interface

…

Class m, 1

st

instance

…

ABAP program with

data

Data

Data

...

Data

Data

...

Interface

Interface

…

Class m, 1

st

instance

Data

Data

...

Interface

Interface

…

Class 1, 1

st

instance

· In practice, it is very cumbersome to implement instance management within a function group. Consequently, the data is usually in the calling program, and the function modules work with this data. This causes various problems. For example, all of the users have to work with the same data structures as the function group. If you want to change the internal data structure of a function group, you will affect a lot of users, and the implications of the changes are often hard to predict.

· Another problem is that all users have copies of the data, and it is difficult to keep them consistent when changes are made.

· Working with global data in function groups is dangerous, because it is almost impossible in a complex transaction to control when each function group is loaded.

· These problems have been solved with the introduction of classes. Data and functions are defined in classes instead of function groups. An ABAP program can then work with any number of runtime instances that are based on the same template. Instead of loading a single runtime instance of a function group implicitly when you call a function module, ABAP programs can create runtime instances of classes explicitly. The individual runtime instances are uniquely identifiable objects and are addressed using object references.

[image: image11.wmf]ã

SAP AG 1999

Interfaces

l

Interface has a definition but no implementation

l

Interfaces are implemented by classes

l

They can be accessed uniformly using interface references

Interface

Interface

· Interfaces are defined independently of classes.

· They can contain declarations for elements such as attributes and methods.

· Interfaces are implemented by classes

· The classes then have a uniform external point of contact. They must provide all of the functions of the interface by implementing its methods.

· In a program, you can create reference variables with reference to interfaces. However, you cannot instantiate an interface.

· Interface references can, however, point to objects of different classes.

[image: image12.wmf]ã

SAP

AG 2002

l

Use Business Add

-

Ins to implement

enhancements to programs

At the conclusion of this topic, you will be able to:

Implementing Business Add

-

Ins: Topic Objectives

[image: image13.wmf]ã

SAP

AG 2002

Business Add

-

Ins: Architecture

SAP

SAP

IBU

IBU

Partner

Partner

Customer

Customer

…

…

SAP

SAP

program

program

Business Add

-

In Interface

Implement

Implement

-

-

ation

ation

Generated

Add

-

In

Class

Software

Software

product

product

Implement

Implement

-

-

ation

ation

· Unlike customer exits, Business Add-Ins take into account the changes to the software delivery process. The top part of the graphic illustrates the typical delivery process: It no longer merely consists of provider and user. Instead, it can now contain a whole chain of intermediate providers.

· The bottom part of the graphic explains how Business Add-Ins work. Enhancements are made possible by SAP application programs. This requires at least one interface and an adapter class that implements it. The interface is implemented by the user.

· The main advantage of this concept is the capacity for reuse. Once implemented, a Business Add-In can be reimplemented by other links in the software chain (further to the right in the graphic).

· Furthermore, an implementation can also offer Business Add-Ins of its own.

[image: image14.wmf]ã

SAP

AG 2002

Business Add

-

Ins: Components

Business Add

-

In

INTERFACE

<

badi

-

interface

>.

DATA: a1 ...

ENDINTERFACE

.

METHODS m2 ...

METHODS m2 ...

METHODS m1

METHODS m1

EXPORTING

EXPORTING

e_par1

e_par1

e_par2

e_par2

IMPORTING

IMPORTING

i_par1.

i_par1.

Generated

Business

Add

-

In

Class

FCodes

Program

<

prog

>

+ABC

Function code

Subscreens

Calling program

<prog>

0200

Scr. no.

ABCD

Subscreen area

Scr..

Besc

Attributes

Reusable

Filter

-

dependent

· A Business Add-In contains the components of an enhancement. Each Business Add-In can contain the following components:

· Program enhancements: In the Business Add-In, the interfaces for program enhancements are defined in the form of interface methods. This interface is used to implement the enhancement. The SAP program calls the interface methods of the generated Business Add-In class.

· Menu enhancements: As with customer exits, you can enter function codes in a Business Add-In. These menu entries are available in the GUI definition and are made visible when the Business Add-In is implemented.

· Screen enhancements: As with customer exits, you can define screen enhancements in a Business Add-In, which you can then implement.

· Several components are created when you define a Business Add-In:

· Interface

· Generated class (Business Add-In class) that implements the interface

· The generated class (Business Add-In class) performs the following tasks:

· Filtering: If you implement a filter-dependent Business Add-In, the Add-In class ensures that only the relevant implementations are called.

· Control: The adapter class calls the active implementations.

[image: image15.wmf]ã

SAP

AG 2002

Business Add

-

Ins: Flow Diagram

Application program

Service class

CL_EXITHANDLER

Instance of

Add

-

In class

<badi

-

class>

Add

Add

-

-

In: Instance of

In: Instance of

implementing class

implementing class

Processing for

active implementations

1

1

2

2

· This graphic shows the process flow of a program that contains a Business Add-In call. It enables us to see the possibilities and limitations inherent in Business Add-Ins.

· Not shown: You must declare a reference variable referring to the Business Add-In interface in the declaration section.

· In the first step, an object reference is created by CL_EXITHANDLER, the service class delivered by SAP. We will discuss the precise syntax later on. This generates the conditions for calling methods of program enhancements.

· When you define a Business Add-In, the system generates a Business Add-In class, which implements the interface. In call (2), the interface method of the Add-In class is called. The Add-In class searches for all of the implementations of the Business Add-In and calls the implemented methods.

[image: image16.wmf]ã

SAP

AG 2002

Business Add

-

Ins: The Calling Program

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

DATA: r_var

DATA: r_var

TYPE REF TO <badi

TYPE REF TO <badi

-

-

interface>.

interface>.

CALL METHOD

CALL METHOD

cl_exithandler=>get_instance

cl_exithandler=>get_instance

CHANGING

CHANGING

instance = r_

instance = r_

var

var

.

.

CALL METHOD r_

CALL METHOD r_

var

var

-

-

>method

>method

EXPORTING

EXPORTING

<i_variables>

<i_variables>

IMPORTING

IMPORTING

<e_variables>.

<e_variables>.

r_

var

1

1

2

2

Instance of

Instance of

<badi

<badi

-

-

class>

class>

· This graphic contains the syntax you use to call a Business Add-In. The numbered circles correspond to the calls from the previous page.

· First, you must define a reference variable with reference to the Business Add-In interface. The name of the reference variable does not necessarily have to contain the name of the Business Add-In.

· In the first call (1), an object reference is created. This generates an instance of the generated Business Add-In class. Only the methods of the interface can be called with this reference object.

· You can use this object reference to call the required methods available with the enhancement (2).

[image: image17.wmf]ã

SAP

AG 2002

Implementing Business Add

-

Ins:

Initial Screen

Business

Add

-

Ins:

Implementation

Maint

. Initial Screen

<

impl

>

Implementation name

Name of the

implementation

Name of the

implementation

Business Add

-

Ins:

Definition

Sel

.

Display

<

badi

>

Definition name

Create

Change

Create

Create

· To implement Business Add-Ins, use transaction SE19 (Tools -> ABAP Workbench -> Utilities -> Business Add-Ins ->Implementation).

· Enter a name for the implementation and choose Create. A dialog box appears. Enter the name of the Business Add-In. The maintenance screen for the Business Add-In then appears.

· Alternatively, you can use the Business Add-In definition transaction (SE18) to reach its implementations. The menu contains an entry, Implementation, which you can use to get an overview of the existing implementations. You can also create new implementations from here.

[image: image18.wmf]ã

SAP

AG 2002

FCodes

Interface

Attrs

.

Class Builder:

Edit Method

IF_<interface>~<m...>

Implementing Business Add

-

Ins:

Methods

Methode

Add

-

in

method

Description

Interface name

Name of implementing class

<method>

METHOD if_<badi

-

interface>~<method>.

*...

ENDMETHOD.

<

badi

-

interface

>

<

impl

-

class

>

· You can assign any name to the implementing class. However, it is a good idea to observe the proposed naming convention. The suggested name is constructed as follows:

· Namespace prefix, Y or Z

· CL_ (for class)

· IM_ (for implementation)

· Name of the implementation

· To implement the method, double-click its name. The system starts the Class Builder editor.

· When you have finished, you must activate your objects.

[image: image19.wmf]ã

SAP

AG 2002

Class Builder:

Edit Method <badi

-

interface>~<m...>

Implementing Business Add

-

Ins:

Private Methods

METHOD if_<badi

-

interface>~<method>.

ENDMETHOD.

CALL METHOD <priv_method> EXPORTING ...

CALL METHOD <priv_method> EXPORTING ...

.

.

Class Builder:

Change class <i

mpl

-

class>

Events

Methods

Attributes

Parameters

Exceptions

Method

new method in implementation

Description

<priv_method>

Type

· In the implementing class, you can create private methods that you then call from the interface method.

· To do this you must edit the implementing classes directly in the Class Builder. You create the private methods including interfaces. Specify a visibility level for the method, and implement it.

[image: image20.wmf]ã

SAP

AG 2002

Implementing Business Add

-

Ins:

Activation

Business

Add

-

Ins:

Implementation

Maint

. Initial Screen

<

impl

>

Implementation name

l

Activation

l

Undo activation

Display

Create

Change

· Use the Activate icon to activate the implementation of a Business Add-In. From now on, the methods of the implementation will be executed when the relevant calling program is executed.

· If you deactivate the implementation, the methods will no longer be called. However, the corresponding calls in the application program are still processed. The difference is that the instance of the adapter class will no longer find any active implementations. Unlike CALL CUSTOMER-FUNCTION , the CALL METHOD CL_EXITHANDLER=>GET_INSTANCE call is still executed even if there are no implementations. The same applies to the method call that calls the method of the adapter class.

· You can only activate or deactivate an implementation in its original system without modification. The activation or deactivation must be transported into subsequent systems.

· If a Business Add-In can only have one implementation, there can still be more than one implementation in the same system. However, only one can be active at any time.

[image: image21.wmf]ã

SAP

AG 2002

SAP

SAP

Cust

Cust

.

.

BAdI

:

Function Codes

-

Overview

Function 1

Function 2

Function 3

Function 1

Function 2

Function 3

Menu 1

Menu 2

Menu 2

Menu 3

Function 1

Function 2

Function 3

Function 1

Function 2

Function 3

Menu 1

Menu 2

Menu 2

Menu 3

Cust

Cust

. function

. function

· As with customer exits, you can use menu enhancements with Business Add-Ins. However, the following conditions must be met:

· The developer of the program you want to enhance must have planned for the enhancement.

· The menu enhancement must be implemented in a BAdI implementation.

[image: image22.wmf]ã

SAP

AG 2002

SAP

SAP

Business Add

-

In:

Function Codes

-

Prerequisites

Menu Painter

Back

Display

BACK

DISP

Customer

Customer

function

function

+XXX

+XXX

Menu 1

Menu 2

Menu 3

· Function codes of menu enhancements begin with a plus sign (+).

· The menu entry will only appear if there is an active business add-in implementation containing the corresponding enhancement.

[image: image23.wmf]ã

SAP

AG 2002

Business Add

-

Ins:

Function Codes

-

Restrictions

FCodes

Program

/namespace/...

Description

Function code

Interface

Attributes

Attributes

Reusable

Filter

-

dependent

+

xxx

· You can only create function codes for single use Business Add-Ins; moreover, the Business Add-In must not be filter-dependent.

· These restrictions are necessary to ensure that there are no conflicts between two or more implementations. (Which menu entry should be displayed?)

[image: image24.wmf]ã

SAP

AG 2002

PROGRAM <program_using_badi>.

DATA ok_code LIKE sy

-

ucomm.

DATA: r_

var

TYPE REF TO <

badi

-

interface

>.

...

CASE ok_code.

WHEN 'DISP'.

...

ENDCASE.

PROGRAM <program_using_badi>.

DATA ok_code LIKE sy

-

ucomm.

DATA: r_

var

TYPE REF TO <

badi

-

interface

>.

...

CASE ok_code.

WHEN 'DISP'.

...

ENDCASE.

WHEN '+XXX'.

WHEN '+XXX'.

CALL METHOD r_

CALL METHOD r_

var

var

-

-

><

><

method

method

>

>

EXPORTING

EXPORTING

<i_variables>

<i_variables>

IMPORTING

IMPORTING

<e_variables>.

<e_variables>.

Business Add

-

Ins:

Processing

Function

Codes in the

Program

· If the user chooses the menu entry in the program to which the function code, +<exit>, is assigned, the system processes the relevant method call.

· The method call and the menu enhancement belong inseparably to one another. Having the former without the latter would make no sense. For this reason, it is important that the two enhancement components are combined in a single enhancement - the Business Add-In.

[image: image25.wmf]ã

SAP

AG 2002

l

Define Business Add

-

Ins

l

Write a program that offers an enhancement

using a Business Add

-

In

At the conclusion of this topic, you will be able to:

Defining Business Add

-

Ins: Topic Objectives

[image: image26.wmf]ã

SAP

AG 2002

Business Add

-

In Definition:

Initial Screen

Business

Add

-

Ins:

Definition Maintenance Initial Screen

Definition name__

Name of

BAdI

definition

Name of

BAdI

definition

Display

Create

Change

Create

Create

· To create a Business Add-In, use the BAdI Builder (Tools (ABAP Workbench (Utilities (Business Add-Ins (Definition).

[image: image27.wmf]ã

SAP

AG 2002

Business Add

-

in Definition:

Attributes

FCodes

Program

Description

Function code

Interface

Attributes

Attributes

Reusable

Filter

-

dependent

FilterType

<

filter

_

type

>

· A Business Add-In has two important attributes that you must define:

· Reusable

· Filter-dependent

· If you want the Business Add-In to support multiple active implementations, select Reusable. The sequence in which the implementations will be processed is not defined. Even if the Business Add-In does not support multiple use, you can still have more than one implementation for it. However, only one implementation can be active at a time.

· If you make a Business Add-In filter-dependent, you can make calls to it depending on certain conditions. You must specify the filter type in the form of a data element or as an ABAP Dictionary structure. The value table of the domain used by the data element contains the valid values for the implementation. If you use a structure for the filter type, the same applies to each field in this structure.

· When the enhancement method is called, a filter value must be passed to the interface.

[image: image28.wmf]ã

SAP AG 1999

Business Add

-

In Definition:

Function Codes

FCodes

Program

/namespace/...

Description

+xxx

Function code

Interface

Attributes

Attributes

Reusable

Filter

-

dependent

· You can include function codes in a Business Add-In definition (like menu exits in customer exits). To do this, enter the program name and function code, and a short description on the relevant tab page.

· Restrictions:

· It is not currently possible to create BAdIs that consist only of menu enhancements (function codes).

· If you use menu enhancements, you cannot reuse a BAdI or make it filter-dependent.

[image: image29.wmf]ã

SAP

AG 2002

Method

Enhancement method

Description

<method1>

Type

Enhancement method 2

<method2>

Business Add

-

In Definition: Interface Methods

FCodes

Interface

Attributes

Class Builder:

Change Interface

<badi

-

interface>

Events

Methods

Attributes

Interface name

Parameters

Exceptions

<

badi

-

interface

>

· The system proposes a name for the interface and the generated class. You can, in principle, change the name of the interface to anything you like. However, your Business Add-In will be easier to understand if you retain the proposed name.

· The name of the generated class is composed as follows:

· Namespace prefix

· CL_ (to signify a class in general)

· EX_ (stands for exit)

· Name of the Business Add-In (without the namespace prefix)

· If you double-click the interface name, the system switches to the Class Builder, where you can define the interface methods.

· A Business Add-In interface can have several interface methods.

[image: image30.wmf]ã

SAP

AG 2002

Business Add

-

In Definition:

Method Interface Parameters

Class Builder:

Change Interface

<badi

-

interface>

Events

Methods

Attributes

Events

Methods

Attributes

Parameters

Description

Type

Exporting

Importing

Changing

Ref. Type

Exceptions

Exceptions

Methods

Method

Business Add

-

In method

Description

<method>

Type

Parameters

· You can use all of the normal functions of the Class Builder. For example, you can:

· Define interface methods

· Define interface parameters for the methods

· Declare the attributes of the interface

· If the Business Add-In is filter-dependent, you must define an import parameter flt_val for each method. Otherwise, you define the interface parameters you need for the enhancement.

[image: image31.wmf]ã

SAP

AG 2002

Business Add

-

In Definition

:

Activating the Interface

Class Builder:

Change Interface

<badi

-

interface>

Events

Methods

Attrs

.

Method

Business Add

-

In method

Description

<method>

Type

Activation

Activation

Parameters

Exceptions

· Once you have finished working on your interface, you must activate it. This generates the Business Add-In class for the Business Add-In.

· If you change the interface, the Add-In class is regenerated automatically.

· You can also generate the adapter class explicitly at any time by choosing Utilities -> Regenerate from the initial screen of the Business Add-In maintenance transaction.

[image: image32.wmf]ã

SAP

AG 2002

Business Add

-

In Definition: Call in Program

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

DATA: r_

DATA: r_

var

var

TYPE REF TO <

TYPE REF TO <

badi

badi

-

-

interface

interface

>.

>.

CALL METHOD

CALL METHOD

cl_exithandler=>get_instance

cl_exithandler=>get_instance

CHANGING

CHANGING

instance = r_

instance = r_

var

var

.

.

CALL METHOD r_

CALL METHOD r_

var

var

-

-

><

><

method

method

>

>

EXPORTING

EXPORTING

<i_variables>

<i_variables>

IMPORTING

IMPORTING

<e_variables>.

<e_variables>.

r_

var

1

1

3

3

2

2

Instance of

Instance of

<

<

badi

badi

-

-

class>

class>

· To call Business Add-In methods in an application program, you must include three statements in the program:

· Declare a reference variable (1) with reference to the Business Add-In interface (in our example, r_var).

· Call the static method GET_INSTANCE of the service class CL_EXITHANDLER (2). This returns an instance of the required object. This involves an implicit narrowing cast, so that only the interface methods of the object with the reference variable r_var can be called.

· You can now call all of the methods of the Business Add-In (3). Make sure you specify the method interfaces correctly.

[image: image33.wmf]ã

SAP

AG 2002

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

REPORT <program_using_badi>.

START

-

OF

-

SELECTION.

END

-

OF

-

SELECTION.

DATA: r_

var

TYPE REF TO <

badi

-

interface

>.

DATA: r_

var

TYPE REF TO <

badi

-

interface

>.

CALL METHOD

cl_exithandler=>get_instance

CHANGING

instance = r_

var

.

CALL METHOD

cl_exithandler=>get_instance

CHANGING

instance = r_

var

.

CALL METHOD r_

CALL METHOD r_

var

var

-

-

><

><

method

method

>

>

EXPORTING

EXPORTING

flt_val = <filterwert>

flt_val = <filterwert>

<i_variables>

<i_variables>

IMPORTING

IMPORTING

<e_variables>.

<e_variables>.

r_

var

1

1

3

3

2

2

Instance of

Instance of

<

<

badi

badi

-

-

class>

class>

Calling a Filter

-

Dependent Business Add

-

In

· If your Business Add-In is filter-dependent, you must pass an appropriate value to the parameter, flt_val.

[image: image34.wmf]ã

SAP

AG 2002

l

Write a program that offers an enhancement using a

Business Add

-

In

At the conclusion of this topic, you will be able to:

Creating Screen Enhancements Using Add

-

Ins:

Topic Objectives

[image: image35.wmf]ã

SAP

AG 2002

Add

-

In Screen Enhancements: Principles

Implement. program

(function group)

SAP

application

program

abcd

PBO.

PBO.

Add

-

In class

<badi

-

class>

Static attribute:

Static attribute:

Screen instance

Screen instance

PAI.

PAI.

PBO.

PAI.

Implementing

class

Instance

Instance

attributes:

attributes:

Screen data

Screen data

SET INSTANCE

GET DATA

PUT DATA

GET DATA

GET DATA

PUT DATA

PUT DATA

GET INSTANCE

· The ABAP virtual machine does not recognize screens bound to classes. Thus, only "classical" programs (of types 1, F, or M) can be used as containers for screens. Screen enhancements need to take this into consideration.

· When you create a Business Add-In screen enhancement, the provider reserves a subscreen area on the application program screen, which is then filled with the subscreen of the implementing program (similar to customer exits). However, the application program and subscreen container program do not communicate directly, but rather through the generated Business Add-In class.

· The following slides show this communication process step by step.

[image: image36.wmf]ã

SAP

AG 2002

Add

-

In Screen Enhancements: Components

Add

-

In

FCodes

Program

<prog>

+ABC

Function code

Attributes

Reusable

Filter

-

dependent

INTERFACE

IF_EX_<

badi

>.

ENDINTERFACE

.

METHODS

METHODS

put

put

_

_

data

data

IMPORTING

IMPORTING

<

<

data

data

>.

>.

DATA: gl_dat...

DATA: gl_dat...

METHODS

METHODS

get

get

_

_

data

data

EXPORTING

EXPORTING

<

<

data

data

>.

>.

METHODS ...

METHODS ...

Subscreens

Calling program

<prog>

0200

Scr.No.

ABCD

Subscreen Area

Bla

..

Desc

· If a Business Add-In contains one or more screen enhancements, it cannot be flagged as Reusable. If it contains menu enhancements, it cannot be flagged Filter-Dependent.
· You enter the calling program, screen number, and subscreen area on the Subscreens tab. The name of the implementing program and number of the subscreen screen are specified later by the implementing developer.

[image: image37.wmf]ã

SAP

AG 2002

Add

-

In Screen Enhancements: Calls in the

Application Program (1)

l

In the PBO:

l

Generate the instance

l

Register the instance, so that implementing classes can

access it

l

Get the program name and screen number of the

implementation

l

Make data available

l

Call the subscreen

· To provide a screen enhancement using a Business Add-In, you need to do the following in the application program:

· Generate the Business Add-In class.

· Store a reference to this instance in the Add-In class.

· Pass the data - that you want to make available to the enhancement - to the Add-In class.

· Get the program name and screen number of the enhancement screen.

· Finally, call the screen.

[image: image38.wmf]ã

SAP

AG 2002

Add

-

In Screen Enhancements: Calls in the

Application Program (2)

l

In the PAI:

l

Call the subscreen

l

Pass the data back

· In the PAI of the main screen, depending on how the implementing developer has designed the interface, you need to pass the changed data back to the application program using another method call.

[image: image39.wmf]ã

SAP

AG 2002

Screen Enhancements 1: Generating an Instance

SAP application program

MODULE...

MODULE...

MODULE...

MODULE...

CALL

SUBSCREEN...

DATA:

exit

TYPE REF TO

<

badi

-

interface

>.

abcd

CALL METHOD

CALL METHOD

cl_exithandler

cl_exithandler

=>

=>

get

get

_

_

instance

instance

CHANGING

CHANGING

instance

instance

=

=

exit

exit

.

.

Screen

Screen

ABAP

ABAP

Add

-

In class

<

badi

-

class

>

CL_EXITHANDLER

· In the first step, an instance of the Add-In class is generated, just as in functional enhancements. You do this by calling the factory method get_instance from the class CL_EXITHANDLER.

· The reference variable assigned the type of the interface points to the instance of the Add-In class.

[image: image40.wmf]ã

SAP

AG 2002

Screen Enhancements 2: Registering the Instance

SAP application program

MODULE...

MODULE...

MODULE...

MODULE...

CALL

SUBSCREEN...

abcd

CALL METHOD

CALL METHOD

cl_exithandler

cl_exithandler

=>set_instance_for

=>set_instance_for

_subscreens

_subscreens

EXPORTING

EXPORTING

instance = exit.

instance = exit.

Screen

Screen

ABAP

ABAP

CL_EXITHANDLER

DATA: exit

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<badi

-

class>

· Later, the implementation will have to access the instance of the Add-In class. This means that you have to "publish" this instance by passing the reference variable to an attribute of the handler class, which in turn passes this interface reference to the Add-In class.

· You do this by executing the statement:
CALL METHOD cl_exithandler=>set_instance_for_subscreens

[image: image41.wmf]ã

SAP

AG 2002

Screen Enhancements 3: Making Data Available

SAP application program

MODULE...

MODULE...

MODULE...

MODULE...

CALL

SUBSCREEN...

abcd

Screen

Screen

ABAP

ABAP

CL_EXITHANDLER

Data.

Data.

CALL METHOD

CALL METHOD

exit

exit

-

-

>put_data

>put_data

EXPORTING

EXPORTING

<data>

<data>

DATA: exit

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<badi

-

class>

· To make data available to the implementation, you need to pass it in two steps:

· Pass the data to the Business Add-In class. This passed data is stored in global attributes in the implementation of this method. We also strongly advise you to provide sample code at this point. The data is passed by calling the method defined in the Add-In.

· The data stored in the Add-In class in global attributes is automatically passed to the global attributes of the implementing class, if there is an active implementation.

[image: image42.wmf]ã

SAP

AG 2002

Screen Enhancements 4: Get the Program Name

and Screen Number

SAP application program

MODULE...

MODULE...

MODULE...

MODULE...

CALL

SUBSCREEN...

abcd

CALL METHOD

CALL METHOD

cl_exithandler

cl_exithandler

=>get_prog_and_dynp

=>get_prog_and_dynp

_for_subscr

_for_subscr

EXPORTING

EXPORTING

...

...

IMPORTING

IMPORTING

called_program =..

called_program =..

called_dynpro =..

called_dynpro =..

Screen

Screen

ABAP

ABAP

CL_EXITHANDLER

DATA: exit

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<badi

-

class>

· Before executing the CALL SUBSCREEN statement in the flow logic of the container screen, you must fill the program name and screen number variables with the values for the relevant subscreen screen.

· The method call CALL METHOD cl_exithandler=>get_prog_and_dynp_for_subscr gets the calling subscreen screen.

· If there is no active implementation yet, the method returns an empty dummy subscreen screen (0200) from an existing dummy function group (SAPLSEXM). This screen is then called using the CALL SUBSCREEN <prog> <dynnr>. statement.

· If, however, there is an active implementation for the Add-In definition you want to use, the subscreen screen specified in the implementation is used.

[image: image43.wmf]ã

SAP

AG 2002

Implementing

program

Screen Enhancements 5: Calling the Subscreen

SAP application program

MODULE...

MODULE...

MODULE...

MODULE...

abcd

Screen

Screen

ABAP

ABAP

CL_EXITHANDLER

Data

Data

CALL SUBSCREEN

CALL SUBSCREEN

abcd

abcd

INCLUDING prog

INCLUDING prog

dynnr.

dynnr.

Screen

Screen

DATA:

exit

TYPE REF TO

<

badi

-

interface

>.

Add

-

In class

<

badi

-

class

>

· Finally, the application program calls the subscreen screen. If there is no active implementation, the Add-In environment automatically retrieves and displays an empty default subscreen screen.

[image: image44.wmf]ã

SAP

AG 2002

Implementing

program

Screen Enhancements 6: Returning Subscreen

Data

SAP application program

Screen

Screen

ABAP

ABAP

CL_EXITHANDLER

Data

Data

CALL METHOD

CALL METHOD

exit

exit

-

-

>

>

get

get

_

_

data

data

IMPORTING

IMPORTING

<

<

data>

data>

MODULE...

abcd

CALL SUBSCREEN abcd.

CALL SUBSCREEN abcd.

INCLUDING

INCLUDING

prog

prog

dynnr

dynnr

.

.

Screen

Screen

DATA: exit

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<

badi

-

class

>

· If you want to return more data from the implementation after leaving screen, you must call another method.

[image: image45.wmf]ã

SAP

AG 2002

l

Implement an Add

-

In screen enhancement

At the conclusion of this topic, you will be able to:

Implementing Add

-

In Screen Enhancements: Topic

Objectives

[image: image46.wmf]ã

SAP

AG 2002

Implementing Add

-

In Screen Enhancements: Steps

l

Create the program (function group)

l

Create the subscreen screen

l

In the PBO:

l

Get the instance of the adapter class

l

Get data from the adapter class

l

In the PAI:

l

Write the changed data to the adapter class

· To implement a Add-In screen enhancement:

· Create the implementation for the Add-In definition. Specify the program containing the subscreen screen and the subscreen number.

· Create the program specified in the Add-In implementation.

· Create and lay out the subscreen screen.

· The implementing program must get the instance of the Add-In class.

· Data passed from the application to the Add-In class can be retrieved afterwards.

· If you want to return the changed data to the Add-In class, you must call a method to do so in the subscreen screen PAI.

[image: image47.wmf]ã

SAP

AG 2002

Implementing program

Implementing Add

-

In Screen Enhancements:

Getting the Instance

SAP application

program

abcd

Screen

Screen

CL_EXITHANDLER

PBO.

PBO.

MODULE...

MODULE...

CALL METHOD

CALL METHOD

cl

cl

_

_

exithandler

exithandler

=>get_instance_for

=>get_instance_for

_subscreens

_subscreens

IMPORTING

IMPORTING

instance = exit1.

instance = exit1.

ABAP

ABAP

Data

Data

Add

-

In class

<

badi

-

class

>

Screen

Screen

DATA: exit1

TYPE REF TO

<badi

-

interface>.

· To get the reference to the instance of the Add-In class, there is a method GET_INSTANCE_FOR_SUBSCREENS, in the class CL_EXITHANDLER.

· The reference is passed using CALL METHOD cl_exithandler=>set_instance_for_subscreens

· This allows you to access the interface methods and attributes of the Add-In class in the implementing program.

[image: image48.wmf]ã

SAP

AG 2002

Implementing Add

-

In Screen Enhancements: Getting the

Data

Implementing program

SAP application

program

abcd

Screen

Screen

CL_EXITHANDLER

PBO.

PBO.

MODULE...

MODULE...

MODULE...

MODULE...

CALL METHOD

CALL METHOD

exit1

exit1

-

-

>get_data

>get_data

IMPORTING

IMPORTING

<data>.

<data>.

ABAP

ABAP

Data

Data

Screen

Screen

DATA: exit1

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<badi

-

class>

· The implementing program gets the data from the Add-In class by calling the appropriate interface method. This method must pass the data stored in the global attributes of the Add-In class to the interface.

[image: image49.wmf]ã

SAP

AG 2002

Implementing Add

-

In Screen Enhancements:

Returning the Data

Implementing program

SAP application

program

abcd

Screen

Screen

CL_EXITHANDLER

PBO.

PBO.

CALL METHOD

CALL METHOD

exit1

exit1

-

-

>put_data

>put_data

EXPORTING

EXPORTING

<data>.

<data>.

ABAP

ABAP

Data

Data

PAI.

PAI.

MODULE...

MODULE...

Screen

Screen

DATA: exit1

TYPE REF TO

<badi

-

interface>.

Add

-

In class

<badi

-

class>

· If the data is likely to be changed, this changed data is written to the global attributes of the instance of the Add-In class (similar to when retrieving this data). You do this by calling the appropriate Add-In method.

[image: image50.wmf]ã

SAP

AG 2002

l

Explain what an extensible filter type is

l

Explain the default and sample code

At the conclusion of this topic, you will be able to:

Additional Notes on Business Add

-

Ins: Topic

Objectives

[image: image51.wmf]ã

SAP

AG 2002

Cross

Cross

-

-

client

client

Extendible Filter Types:

Prerequisites

<DE>

<DE>

Domains

Domains

Value table

Value table

Text table

Text table

Field Name

Field Name

Type

Type

Key

Key

...

<DE>

language

SPRAS

...

...

Field Name

Field Name

Type

Type

Key

Key

...

<DE>

...

...

Delivery class:

Delivery class:

"E" or "S"

"E" or "S"

Filter type

Filter type

· The assignment of the extendible attribute is subject to the following restrictions:

· The domain to which the extendible filter type refers must have the following properties:

· The domain is linked to a cross-client value table. The value table has exactly one key field which has the data element of the filter type as its field type.

· The domain has a text table with two key fields. A key field has the filter type as its field type, and a key field is a language field. To mark a field as a text field, the field must exist in this table that contains the string TEXT or TXT as a partial string. In the ABAP Dictionary, the text table must be assigned to the value table.

· The delivery class of both tables must be E or S.

· All filter values that are created in the context of an extendible filter-dependent Business Add-In must not yet occur in the value field and are added to the value table when the data is saved. Correspondingly, the values are removed from the value table when the implementation or the entire Business Add-In is deleted. The same applies to text tables.

[image: image52.wmf]ã

SAP

AG 2002

Default Implementation

Active

implementation

exists?

Default

implementation

exists?

Execute

implementation

Execute default

implementation

Yes

No

Yes

No

Call program

enhancement

l

Executed if no other active

implementation is available

l

Created by the provider

· A default implementation is executed whenever no active implementation of a Business Add-In exists. The default implementation is created by the enhancement provider.

· To create a default implementation in the BAdI definition choose Goto (Default code. The system automatically generates a class with a predefined name. Implement the methods so that the required default behavior is generated.

· You can also create a sample implementation. This is a template that can be inserted into the methods of the implementation.

· To create sample implementations choose Goto (Sample code. The system creates a class that implements the methods of the interface. The sample code is displayed for the user as a template.

[image: image53.wmf]ã

SAP

AG 2002

Comparison With Other Enhancement Techniques

Customer exits

Customer exits

l

Enhancement options:

Business

Business

transaction

transaction

events

events

Source code

Source code

Menus

Menus

Screens

Screens

Tables

Tables

Administration

Administration

levels

levels

Business add

Business add

-

-

ins

ins

Reusable

Reusable

Filter

Filter

-

-

specific

specific

· Business Add-Ins are a natural extension of conventional enhancement techniques. They have adopted the concept of the administration layer from customer exits, along with the availability of the various enhancement components.

· Add-Ins adopted the idea of reusability from business transaction events, and have been implemented using a consistent object-oriented approach.

· The object-oriented implementation provides previously unavailable opportunities. For example, it would be possible to enhance the Document object. It would then be possible to provide a new instance of the enhancement for each individual document.

[image: image54.wmf]ã

SAP AG 1999

Business Add

-

In Definition:

Naming Conventions

l

Business Add

-

In Definition

n

<badi> or Z<badi> or /../<badi>

(choose any; comply with namespace)

l

Interface

n

IF_EX_<badi> or ZIF_EX_<badi> or /../IF_EX_<badi>

(choose any; comply with namespace)

l

Methods

n

Choose any name you want

l

Generated Business Add

-

In Class (Adapter Class)

n

CL_EX_<badi> or ZCL_EX_<badi> or /../CL_EX_<badi>

(cannot be changed)

[image: image55.wmf]ã

SAP AG 1999

Business Add

-

In Implementation:

Naming

Conventions

l

Business Add

-

In Implementation

n

<impl> or Z<impl> or /../<impl>

(choose any; comply with namespace)

l

Interface

n

IF_EX_<badi> or ZIF_EX_<badi> or /../IF_EX_<badi>

(defined in Business Add

-

In definition)

l

Methods

n

Defined in Business Add

-

In definition

l

Implementing class

n

CL_IM_<impl> or ZCL_IM_<impl> or /../CL_IM_<impl>

(choose any; comply with namespace)

[image: image56.wmf]ã

SAP

AG 2002

®

Documentation

Application hierarchy

Application hierarchy

Finding a Business Add

-

In

System

System

-

-

>

>

Status

Status

-

-

>Double

>Double

-

-

click program name

click program name

Find character string...

Find character string...

CL_EXITHANDLER

:

:

Global in program <

Global in program <

prog

prog

>

>

l

Directly in the application:

®

Double

-

click reference variable

Double

-

click interface

Class Builder:

®

Where

-

used list for interface

®

CL_EX_<Add

-

In

-

Name>

®

SE18:

<

Add

-

In

-

Name>

®

Documentation

l

Using tools

Repository

Repository

Information System

Information System

IMG

IMG

· There are various ways of searching for Business Add-ins:

· You can search in a relevant application program for the string "CL_EXITHANDLER". If a business add-in is called from the program, the "GET_INSTANCE" method of this class must be called.

· You can then reach the definition of the business add-in using forward navigation. The definition also contains documentation and a guide for implementing the Business Add-In.

· Use the application hierarchy to restrict the components in which you want to search. Start the Repository Information System, then choose Enhancements -> Business Add-Ins to start the relevant search program.

· Alternatively, you can use the entries in the relevant component of the IMG.

[image: image57.wmf]ã

SAP

AG 2002

l

Extend program functions using Business Add

-

Ins

l

Create Business Add

-

Ins so they are available to

subsequent R/3 users in the development chain

l

Implement screen enhancements using Business

Add

-

Ins

You are now able to:

Business

Add

-

Ins: Unit Summary

Exercises

	[image: image58.png]

	Unit: Business Add-Ins

Topic: Using Business Add-Ins

	[image: image59.png]

	At the conclusion of this exercise, you will be able to:

· Implement an enhancement with Business Add-Ins

	[image: image60.wmf]
	The customer service personnel in the agency want the list of bookings that you implemented in the exercise on menu exits to contain more information. The list should contain the name of the customer in addition to his customer number.

1-1
Check if program SAPBC425_BOOKING_## (## = group number) can be enhanced.

1-1-1
Check the program for ways in which it can be enhanced.

1-1-2
Check if an enhancement option is suitable for outputting further information in the list.

1-2
Implement the enhancement you found. Call your implementation ZBC425IM##.

1-2-1
What data is passed to the interfaces of the methods? Are there already fields here that should be displayed in the list?

1-2-2
Table SCUSTOM contains the information about the customers. Get the customer's name from his customer number. Output the name.

1-3
Format the list.

1-3-1 How can you move the vertical line so that the additional fields are displayed within the frame?

1-3-2
Is the CHANGE_VLINE method suitable for changing the position of the vertical line? If so, use it.

1-4
Check your results.

Exercises

	[image: image61.png]

	Unit 7: Business Add-Ins

Topic: Creating Business Add-Ins

	[image: image62.png]

	At the conclusion of this exercise, you will be able to:

· Create a Business Add-In and offer an enhancement in a program with Business Add-In technology

	[image: image63.wmf]
	Develop your own supplementary components for the R/3 System. You want to offer an enhancement that can implement subsequent software layers in a program.

You deliver a program that outputs list of flight connections. You want to provide your customers with the following enhancement options using a Business Add In: When the user double-clicks a row, developers at the customer’s site should be able to implement other actions. Your customers should be able to build a details list.

In the second part of the exercise, test your enhancement. The details list should show all the flights for a connection.

1-1
Create a program that outputs list of flight connections.

1-1-1
To do so, copy program SAPBC425_TEMPLATE to the name ZBC425_BADI_##.

1-1-2
Assign your program to a development class and a change request.

1-2
Create a Business Add-In.

1-2-1
The name of the Business Add-In is ZBC425##.

1-2-2
Create a method. Define the interface.

1-2-3
Which parameter do you have to pass to the interface?

1-3
Edit the program so that a user can double-click on a line to output the details list.

1-3-1
Implement event AT LINE-SELECTION.

1-3-2
Insert the appropriate statements in your program to call a Business Add-In: Declare a reference variable; instantiate an object of the Business Add-In class; implement the call of the Business Add-In method at the right place in the program.

1-4
Implement the enhancement (name of the implementation: ZB425##IM).

1-4-1
A details list should be output when you double-click on a line of the list of the application program. The flight dates of the selected connection should be output in the details list. Table SFLIGHT## contains the flight dates.

1-4-2
Read the relevant data from table SFLIGHT## to an internal table with Array-Fetch. Then output selected fields of the internal table.

1-4-3
Which variables (attributes of the implementing class) do you have to declare? How do you declare an internal table? Where can you declare a table type?

1-5
Check your results.

Exercises

	[image: image64.png]

	Unit: Business Add-Ins

Topic: Implement an Add-In screen enhancement

	[image: image65.png]

	At the conclusion of this exercise, you will be able to:

· Implement a screen enhancement using a Business Add-In.

	[image: image66.wmf]
	Use a transaction of your own to record and change flight data. At present, this transaction offers only standard input fields. Your enterprise wants to record additional data for each flight. The transaction offers an enhancement possibility for this purpose that you will implement.

1-1
Find out whether or not the program SAPBC425_FLIGHT_CHNG## offers an enhancement possibility, which you can use to extend the detail recording screen.

1-2
Look for Business Add-Ins with which you can implement the above requirements.

1-2-1 Search the application hierarchy.

1-2-2 Search the Repository Info System.

1-2-3 Search the Implementation Guide.

1-2-4 If you find a Business Add-In, read its documentation and decide whether or not it is suitable for your enhancement.

1-3
Implement the enhancement.

1-3-1 Create the function group ZBC425IM##. You need this function group to create a subscreen screen.

1-3-2 Create a subscreen screen and assign a number to it.

1-3-3 Add the appropriate fields to the screen.

1-3-4 Program the flow logic for this subscreen screen. At the PBO event, get the instance of the Add-In class and the data that is passed from the SAP application.
At the PAI event, the changed data must be returned to the SAP application.

1-4
Create a Business Add-In implementation. Name your implementation ZBC425SIN##.

1-4-1 Implement the interface method.

1-4-2 Enter the necessary information on the Subscreens tab.

1-4-3 Activate the implementation.

1-5
Test the enhanced application.

0.2 Business Add-Ins Solutions
	[image: image67.png]

	Unit 7: Business Add-Ins
Topic: Using Business Add-Ins

1-1
Check if program SAPBC425_BOOKING_## (## = group number) can be enhanced as follows:
1-1-1
Place the cursor in the list and choose F1 (Technical Info. Double-click on the program name (You can also start directly in the ABAP Editor.). Look for the character string CL_EXITHANDLER in the program. Double-click the transfer parameter exit_book. Double-click the interface used to define the type of exit_book. The Class Builder is started. Make a where-used list for the interface in classes. A class CL_EX_BADI_BOOK## is displayed. The name of the Business Add-In is thus BADI_BOOK##.
1-1-2
Start transaction SE18 (Business Add-In definition). Read the documentation about Business Add-Ins.
1-2
From transaction SE18, go to the transaction for creating implementations of Business Add-Ins using Implementation (Create. Call your implementation ZBC425IM##.
1-2-1
You can display the interface parameters by double-clicking the method in transaction SE18. In the Class Builder, place the cursor on the required method and choose "Parameters". The transfer structure does not contain the fields that you want to display in the list. You have to read the corresponding data separately.
1-2-2
Double-click on the method name to go to the Editor. A proposal for implementing the methods is given below (group 00):
METHOD if_ex_badi_book00~output.
 DATA:
 name TYPE s_custname.
 SELECT SINGLE name
 FROM scustom
 INTO name
 WHERE id = i_booking-customid.
 WRITE: name.
ENDMETHOD.
1-3
The change_vline method is provided for formatting the list. You can move the right edge of the list here.

1-3-1
Parameter c_pos defines the position of the right vertical line.
1-3-2
The method can be implemented as follows:
METHOD if_ex_badi_book00~change_vline.
 c_pos = c_pos + 25.
ENDMETHOD.
Solutions
	[image: image68.png]

	Unit 7: Business Add-Ins
Topic: Creating Business Add-Ins

1-1
Copy the template program as specified in the exercise.
1-2
To create Business Add-Ins, start transaction SE18 (in the ABAP Workbench: Utilities (Enhancements (Business Add-Ins (Definition).
1-2-1
Choose ZBC425## as the name of the Business Add-In. Enter a short description and save your entries.
1-2-2
Choose the tab page "Interface". Double-click on the name of the interface. The Class Builder is started. Enter the name of a method. Give a short description. Choose Parameters to define the interface.
1-2-3
Define two importing parameters whose types are defined with S_CARR_ID (airline) and S_CONN_ID (connection number). Activate the interface. The adapter class is also generated.
1-3
Source code of the program with the Business Add-In:
&---

& Report SAPBC425_TEMPLATE

&---

REPORT sapbc425_badi.

DATA:

 wa_spfli TYPE spfli,

 it_spfli TYPE TABLE OF spfli WITH KEY carrid connid.

* Reference Variable for BAdI

DATA:

 exit_ref TYPE REF TO zif_ex_bc42500.

* Selection Screen

SELECTION-SCREEN BEGIN OF BLOCK carrier

 WITH FRAME TITLE text-car.

SELECT-OPTIONS: so_carr FOR wa_spfli-carrid.

SELECTION-SCREEN END OF BLOCK carrier.

&--

*& Event START-OF-SELECTION

&--

START-OF-SELECTION.

 CALL METHOD cl_exithandler=>get_instance

 CHANGING

 instance = exit_ref.

 SELECT *

 FROM spfli

 INTO CORRESPONDING FIELDS OF TABLE it_spfli

 WHERE carrid IN so_carr.

&--

*& Event END-OF-SELECTION

&--

END-OF-SELECTION.

 LOOP AT it_spfli INTO wa_spfli.

 WRITE: / wa_spfli-carrid,

 wa_spfli-connid,

 wa_spfli-countryfr,

 wa_spfli-cityfrom,

 wa_spfli-countryto,

 wa_spfli-cityto,

 wa_spfli-deptime,

 wa_spfli-arrtime.

 HIDE: wa_spfli-carrid,

 wa_spfli-connid.

 ENDLOOP.

 CLEAR wa_spfli.

&--

*& Event AT LINE-SELECTION.

&--

AT LINE-SELECTION..

 CHECK NOT wa_spfli-carrid IS INITIAL.

 CALL METHOD exit_ref->lineselection

 EXPORTING

 i_carrid = wa_spfli-carrid

 i_connid = wa_spfli-connid.
clear wa-spfli.
1-4
Implement the Business Add-In. From transaction SE18 choose Implementations (Create. Give the implementation the name ZBC425##_IM. Choose the tab "Interface" and double-click on the name of the method. The Editor is started. Enter the source text here:
METHOD zif_ex_bc42500~lineselection.
 DATA:
 it_flights TYPE TABLE OF sflight00,
 wa_flights TYPE sflight00.
 FORMAT COLOR COL_HEADING.
 WRITE: / text-hea, i_carrid, i_connid.
 FORMAT COLOR COL_NORMAL.
 SELECT *
 FROM sflight00
 INTO CORRESPONDING FIELDS OF TABLE it_flights
 WHERE carrid = i_carrid AND
 connid = i_connid.
 LOOP AT it_flights INTO wa_flights.
 / wa_flights-fldate,
 wa_flights-planetype,
 wa_flights-price CURRENCY wa_flights-currency,
 wa_flights-currency,
 wa_flights-seatsmax,
 wa_flights-seatsocc.
 ENDLOOP.
ENDMETHOD.

Activate the implementation.
Solutions
	[image: image69.png]

	Unit:
Business Add-Ins
Topic:
Screen Enhancements

1-1
Find out whether or not the program SAPBC425_FLIGHT_CHNG## offers an enhancement possibility, which you can use to extend the entry screen.
1-1-1
Choose System (Status to get the name of the program. Double-click this program name. Choose Goto (Object Catalog Entry. This tells you the package to which the application is assigned. Double-click the package name to find out the application component containing this package.
1-2
In either the Repository Info System or the application hierarchy, search for suitable Business Add-Ins, using this package and application component as criteria.
1-2-1
In the Repository, choose Enhancements (Business Add Ins (Definition to search for Business Add-Ins.
1-2-2 In the application hierarchy, select the application component. Then choose Info System to navigate to the Repository Info System. All the packages contained in the application component you have selected are entered as search criteria.
1-2-3 The system returns a list of Business Add-Ins. Select the Business Add-In you are interested in, BC425_##FLIGHT2, and choose Display. You are now in the Business Add-In Builder, where you will find the documentation for this Add-In. Get to know the documentation.
1-3
Implement the enhancement.
1-3-1 Create the function group ZBC425IM## in the Object Navigator. To do this, display the object list for your package. Click the package name with the right mouse button and choose Create (Function Group. Enter ZBC425IM## in the Name field and create a short description. Save your entries and assign them to a change request.
1-3-2 Create a subscreen in the function group and assign a number to it. Select the function group and choose Create (Screen from the context menu. Enter a short description and choose the type Subscreen.

1-3-3 Launch the Layout Editor. Choose Goto (Secondary Window (Dict/Program Fields. Enter the ABAP Dictionary structure and choose Get from Dict. Select the fields you want and confirm your choice. Add the fields to the screen.
1-3-4
Navigate to the flow logic for this subscreen screen. This flow logic should include a call to the following module:
*--

PROCESS BEFORE OUTPUT.
 MODULE get_instance.
 MODULE get_data.
*

*--

PROCESS AFTER INPUT.
 MODULE put_data.
--

***INCLUDE LZBC425_IMO01 .
--

&---

*& Module get_instance OUTPUT
&---

MODULE get_instance OUTPUT.
 CALL METHOD cl_exithandler=>get_instance_for_subscreens
 CHANGING
 instance = r_var
 EXCEPTIONS
 OTHERS = 6.
 IF sy-subrc <> 0.
 MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno
 WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.
 ENDIF.
ENDMODULE. " get_instance OUTPUT
&---

*& Module get_data OUTPUT
&---

MODULE get_data OUTPUT.
 CALL METHOD r_var->get_data
 IMPORTING
 e_conn = sdyn_conn.
ENDMODULE. " get_data OUTPUT
--

***INCLUDE LZBC425_IMI01 .
--

&---

*& Module put_data INPUT
&---

* text
--

MODULE put_data INPUT.
 CALL METHOD r_var->put_data
 EXPORTING
 i_conn = sdyn_conn.
ENDMODULE. " put_data INPUT
--

***INCLUDE LZBC425_IMTOP
--

FUNCTION-POOL kaura_im_bc425. "MESSAGE-ID ..
TABLES:
 sdyn_conn.
DATA:
 r_var TYPE REF TO if_ex_bc425_##flight2.
1-4
Create a Business Add-In implementation. From the definition, choose Implementations (Create. Give the implementation the name ZBC425SIN## and confirm your entries.
1-4-1 To navigate to the ABAP Editor, choose the Interface tab and double-click the name of the method.
METHOD if_ex_bc425_##flight2~get_data .
 MOVE-CORRESPONDING wa TO e_conn.
ENDMETHOD. "IF_EX_BC425_##FLIGHT2~GET_DATA
METHOD if_ex_bc425_##flight2~put_data .
 MOVE-CORRESPONDING i_conn TO wa.
ENDMETHOD. " IF_EX_BC425_##FLIGHT2~PUT_DATA
1-4-2 On the Subscreens tab, enter the name of the program from your function group, SAPLZBC425IM##, and the number of the subscreen screen you created.
1-4-3 Activate the implementation by choosing either Implementation (Activate or the appropriate button.
1-5
Execute the application and check that your enhancement is processed.
© SAP AG
TAW12
8-69

