
0 [image: image1.wmf]ã

SAP

AG 2002

l

Calling Programs from Within

a

Program

l

Runtime Architecture and Storage

Access

l

Data

Transfer

l

LUW

Logic

Contents

:

Complex

LUW

Processing

[image: image2.wmf]ã

SAP

AG 2002

l

Call existing programs from your program using

different

techniques

l

Explain the runtime architecture and storage

access options of these programs

l

Appropriately implement the

different

methods for

data transfer between your program and the

programs called from within your program

l

Explain the

LUW

logic for program

-

controlled

program calls

At the conclusion of this unit

,

you

will

be able

to:

Complex

LUW

Processing

:

Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Overview

:

Complex

LUW

Processing

:

Runtime Architecture and Storage

Access

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Data

Transfer

Between the Calling and

the Called Program

Data

Transfer

Between the Calling and

the Called Program

LUW

Logic

in

Program

-

Controlled Program Calls

LUW

Logic

in

Program

-

Controlled Program Calls

[image: image4.wmf]ã

SAP

AG 2002

Synchronous Calls

Main

program

SUBMIT <

program

> AND RETURN.

CALL TRANSACTION <t_

code

>.

CALL FUNCTION <

function

> ...

Function module

Program

Transaction

.

.

.

SUBMIT <

program

>.

LEAVE TO TRANSACTION <t_

code

>.

.

.

.

.

.

.

Program

Transaction

Termination of main

program

· There are two ways of calling other ABAP programs synchronously from within a program.

· The processing of the called program is inserted, that is, the processing of the calling program is interrupted and then continued again after the called program is completed.
CALL FUNCTION , CALL TRANSACTION , SUBMIT <program> AND RETURN
· The calling program is interrupted and the called program is started.
SUBMIT <program> , LEAVE TO TRANSACTION <t_code>
· You can use SUBMIT <program> and SUBMIT <program> AND RETURN to start executable programs (program type "1" or "Executable program").

· CALL TRANSACTION and LEAVE TO TRANSACTION call transactions.

· For more details on SUBMIT , CALL TRANSACTION, and LEAVE TO TRANSACTION,refer to the keyword documentation included with the ABAP Editor.

[image: image5.wmf]ã

SAP

AG 2002

Asynchronous Call of

a

Function

Module

CALL FUNCTION 'ABC'

Function module

ABC

.

.

.

Parallel

processing

STARTING NEW TASK <

task

name

>

EXPORTING ...

.

.

.

.

.

.

...

Main

program

· Function modules can also be called asynchronously for executing processes in parallel. For this, the call must be supplied with the addition STARTING NEW TASK <task name> where <task name> stands for a user-specific name for the new independent task in which the function module will be processed.

· Asynchronously called function modules are processed in parallel with and independent of the calling program.

· You can receive the output of the function module (RECEIVE RESULTS FROM FUNCTION) in a later processing phase of the calling program.

· Function modules that are to be called using the addition STARTING NEW TASK must be marked in their properties (process type) as remote-capable modules.

· For more information, see the keyword documentation in the ABAP Editor for CALL FUNCTION.

[image: image6.wmf]ã

SAP

AG 2002

Logical Memory Level

Model

External session

(

window

) 1

ABAP

memory

Internal session

2

Program

B

SAP

memory

(SET/GET

parameters

)

User session

(

logon

)

Internal session

1

Program

A

External session

(

window

) 2

ABAP

memory

Internal session

1

Program

C

· Several external sessions or modes can be active within a user session.
An external session is usually linked to an SAP R/3 window.

· Several internal sessions (up to 20) can run within one external session.
One program is always processed within an internal session.

· Program data is only visible within the program.

· You can use SAP memory and ABAP memory to pass data between different programs.

· Each SAP session has one SAP memory that can be accessed from all other modes of this session. The SAP memory serves as a storage area for field values and is retained for the duration of the session. You can use the contents of the SAP memory as default values for the respective screen input fields. Since all sessions can access the SAP memory, it is only conditionally suitable for transferring data between internal sessions of an external session. Instead, the ABAP memory should be used.

· Each external session has its own ABAP memory. Access to the ABAP memory is possible only from the respective internal sessions. ABAP memory is a storage area for internal program variables (fields, structures, internal tables, complex objects) so that they can be passed between internal sessions of an external session. When you end an external session, the corresponding ABAP memory is released automatically.

· Accessing the ABAP or SAP memory is discussed later in this unit .

[image: image7.wmf]ã

SAP

AG 2002

Synchronous Function

Module

Call

External session

ABAP

memory

SAP

memory

(SET/GET

parameters

)

Internal session

1

.

.

.

.

.

.

Program

A

CALL FUNCTION 'ABC'

Function group

XYZ

Function

module

ABC

.

. .

· When a function module is called, the corresponding function group is loaded into the current internal session and the called function module is processed. Processing of the calling program is interrupted and continued after the function module has been executed.

· The loaded function group and the global data objects in it are kept in the internal session until the end of the calling program. This means that when the current main program calls an additional function module of this group, the new function group does not have to be reloaded. The global data objects of the function group have the same contents as they had after the first function module was called.

[image: image8.wmf]ã

SAP

AG 2002

SUBMIT AND RETURN / CALL TRANSACTION

External session

ABAP

memory

SAP

memory

(SET/GET

parameters

)

Internal session

1

Internal session

2

SUBMIT ABC AND RETURN.

CALL TRANSACTION 'TXYZ'

.

.

.

.

.

.

Program

ABC

or

Transaction

TXYZ

· The program called using CALL TRANSACTION or SUBMIT AND RETURN runs in a separately opened internal session that contains a new program context.

· After the called program has been completed, the new internal session is deleted and processing is continued for the calling program.

· The called program can end itself prematurely with the LEAVE PROGRAM statement.

[image: image9.wmf]ã

SAP

AG 2002

SUBMIT

External session

ABAP

memory

Internal session

2

SAP

memory

Internal session

1

Program

A

Program

B

.

.

.

.

.

.

SUBMIT C.

External session

ABAP

memory

Internal session

2

SAP

memory

Internal session

1

Program

A

Program

C

before call

after call

· If a program is called through the SUBMIT statement, the context of the calling program is removed from the current internal session and the called program is loaded for processing.

[image: image10.wmf]ã

SAP

AG 2002

LEAVE TO TRANSACTION

External session

ABAP

memory

Internal session

2

SAP

memory

Internal session

1

Program

A

Program

B

.

.

.

.

.

.

LEAVE TO

TRANSACTION

External session

ABAP

memory

SAP

memory

Internal session

1

Called

transaction

before call

after call

· The LEAVE TO TRANSACTION statement removes all the internal sessions of the current external session and opens a new internal session for processing the called transaction.

· When this happens, the ABAP memory is initialized! This means, in particular, that you cannot pass any data to the called transaction through the ABAP memory.

[image: image11.wmf]ã

SAP

AG 2002

Asynchronous Function

Module

Call

External session

ABAP

memory

Internal session

1

SAP

memory

Program

A

.

.

.

.

.

.

CALL FUNCTION 'ABC'

External session

ABAP

memory

SAP

memory

Internal session

1

Session 1

Session 2

STARTING NEW TASK 'T'

Function group

XYZ

Function

module

ABC

.

.

.

.

Parallel

processing

in

different

sessions

· Function modules that have been called asynchronously are processed on the same application server in a newly opened session. The processing takes place in parallel and independently of the calling program.

· You can receive the output of the function module (RECEIVE RESULTS FROM FUNCTION) in a later processing phase of the calling program.

· For more information, see the keyword documentation in the ABAP Editor for CALL FUNCTION.

[image: image12.wmf]ã

SAP

AG 2002

Overview of

Complex

LUW

Processing

:

Data

Transfer

Between Programs

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Data

Transfer

Between the Calling and

the Called Program

Data

Transfer

Between the Calling and

the Called Program

LUW

Logic

in

Program

-

Controlled Program Calls

LUW

Logic

in

Program

-

Controlled Program Calls

[image: image13.wmf]ã

SAP

AG 2002

Data

Transfer

Between Programs

(

Overview

)

Program

A

ABAP

memory

SAP

memory

Call interface

DB

Program

B

File

· There are different ways of passing on data to a program when it is called:

· Through the interface of the called program (interface of a subroutine, function module, or dialog modules, standard selection screen of a report)

· Through the ABAP memory

· Through the SAP memory

· Through database tables

· Through files on your presentation server or application server

· For more information about transferring data using database tables and the shared buffer, refer to the keyword documentation in the ABAP Editor for EXPORT and IMPORT.
· For more information about transferring data between an ABAP program and your presentation server, refer to the documentation for the function modules GUI_UPLOAD and GUI_DOWNLOAD.
· For more information about transferring data between an ABAP program and your application server, refer to the keyword documentation in the ABAP Editor for TRANSFER and READ DATASET.

[image: image14.wmf]ã

SAP

AG 2002

Program

B

Data

Transfer

Through the Call

Interface

FUNCTION ABC.

...

ENDFUNCTION.

Function module

Selection screen

FM

interface

Program

A

.

.

.

CALL FUNCTION 'ABC'

EXPORTING ...

IMPORTING ...

EXCEPTIONS ...

.

.

.

.

.

.

SUBMIT B [AND RETURN]

WITH ...

Data

Data

· Function modules have an interface for passing data between the calling program and the function module itself (there is also a comparable mechanism for ABAP subroutines).

· If you are calling an ABAP program that has a standard selection screen, you can pass values to the input fields on the selection screen.. There are two options here:

· You can enter a variant for the call (SUBMIT addition, USING SELECTION-SET).

· You can enter actual values for the input fields on the selection screen during the call (see next graphic).

[image: image15.wmf]ã

SAP

AG 2002

SUBMIT .

. .

WITH

SUBMIT <

program

> [AND RETURN] [VIA SELECTION

-

SCREEN]

WITH

<

parameter

> EQ <

value

>.

WITH

<

sel

_

opt

> <

operator

> <

value

> SIGN <s>.

WITH

<

sel

_

opt

> BETWEEN <value1> AND <value2> SIGN <s>.

WITH

<

sel

_

opt

> NOT BETWEEN <value1> AND <value2> SIGN <s>.

WITH

<

sel

_

opt

> IN <

sel

_

tab

>.

SUBMIT

abc

AND RETURN

WITH p_

carrid

EQ

mycarrid

WITH p_

connid

EQ

myconnid

WITH s_

fldate

IN

sel

_

tab

.

RANGES

sel

_

tab

FOR

sflight

-

fldate

.

· The SUBMIT addition VIA SELECTION-SCREEN is used to start the called program by displaying its selection screen. If this addition is not specified, the system executes the program without processing its selection screen. In this case, you can still pass values for the input fields of its selection screen to the program (WITH addition; for syntax, see above).

· If you use the pattern key in the ABAP Editor to insert a program call using SUBMIT, the system will list – in the inserted command – all the selection screen elements of the program to be called using the WITH addition.

· For more information on the WITH addition, see the ABAP Editor keyword documentation for SUBMIT WITH.

[image: image16.wmf]ã

SAP

AG 2002

Data

Transfer

Through the

ABAP

Memory

Data cluster

ABC

ABAP

memory

XYZ

Internal session

1

Internal session

2

External session

Program

A

Program

B

IMPORT

carrid

TO p_

carrid

it

_

spfli

FROM MEMORY ID

'ABC'.

MYCL

.

.

.

EXPORT

carrid

FROM

mycarrid

wa

_

spfli

it

_

spfli

TO MEMORY ID

'ABC'.

wa

_

spfli

.

.

.

it

_

spfli

carrid

· Using the EXPORT TO MEMORY ID <id> statement, you can copy variables of your program with their current values as data clusters into the ABAP memory. The ID you specify here uniquely identifies the created data cluster (maximum 32 characters).

· An export to the same memory ID will overwrite the corresponding data cluster.

· Using the IMPORT FROM MEMORY ID <id> statement, you can read data from the specified data cluster into the fields of your ABAP program.

· The source and target variables must have the same format in the write and read programs.

· The FREE MEMORY ID <id> statement deletes the respective data cluster.
The FREE MEMORY statement without the ID addition deletes the entire ABAP memory of the current external session.

· You can use the IMPORT command to read only a few of the variables in the data cluster.

[image: image17.wmf]ã

SAP

AG 2002

Data

Transfer

Through the

SAP

Memory

SAP

memory

(SET/GET

parameters

)

CAR = 'LH'

SET PARAMETER

ID 'CAR'

FIELD 'LH'.

GET PARAMETER

ID 'CAR'

FIELD

carrid

.

Airline

Program

A

Program

B

Program

C

Screen

100

Airline

Program

D

Screen

500

CAR = 'LH'

'LH'

LH

Get

function for screen field

UA

Get

function for screen field

CAR = 'UA'

Data element

:

ABC

Parameter ID:

CAR

.

.

.

F1

Technical

Inf

o

+

F1

Technical

Info

+

· Using the Object Navigator, you can define parameter IDs for the SAP R/3 system (through entries in table TPARA). The ID parameter may not be longer than 20 characters maximum.

· Using the SET PARAMETER ID statement, ABAP programs can set a value in the SAP memory of the current session for the specified parameter. This value can be read by all programs of the same session using the GET PARAMETER ID statement.

· A parameter in the SAP memory can also be set by a user entry in a screen field. For this purpose, the screen field must be defined through a data element that is linked with the respective parameter ID. In addition, the SET functions must be activated in the screen field properties.

· Conversely, a screen input field can display the corresponding parameter value in the SAP memory to the user as an input proposal. The following prerequisites must be fulfilled:
 - The screen input field has been defined through a data element that is linked to the corresponding parameter ID.
 - The GET functions of the screen field are activated.
 - The program supplies the screen field only with the initial value.

· In this way, programs and screens can exchange data through the SAP memory during the same session.

· For information on the parameter ID linked to an input field, on the input screen point to the field and choose F1 help (Technical Info

[image: image18.wmf]ã

SAP

AG 2002

Screen

Default

Value Through the

SAP

Memory

SAP

memory

(SET/GET

parameters

)

CAR = 'LH'

carrid

= 'LH'.

...

SET PARAMETER

ID 'CAR'

FIELD

carrid

.

CALL TRANSACTION 'TABC'

[AND SKIP FIRST SCREEN].

Program

A

CAR = 'LH'

Airline

Screen

100

LH

Transaction

TABC

.

.

.

'LH'

· The example in the graphic shows how you can set default values for input fields of a transaction called by a program. In this way, you can execute the transaction, if required, without displaying the first screen (use the addition AND SKIP FIRST SCREEN).

· Please note the prerequisites (listed on the previous page) that must be fulfilled for displaying a default value from the SAP memory in a screen field.

[image: image19.wmf]ã

SAP

AG 2002

Overview

of

Complex

LUW

Processing

:

LUW

Logic

in

Program

-

Controlled Calls

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Runtime Architecture and Storage

Access

by Programs Called Within Programs

Data

Transfer

Between the Calling and

the Called Program

Data

Transfer

Between the Calling and

the Called Program

LUW

Logic

in

Program

-

Controlled Program Calls

LUW

Logic

in

Program

-

Controlled Program Calls

[image: image20.wmf]ã

SAP

AG 2002

SAP

LUWs

in

Synchronous Program Calls

SAP LUW 1

Program

1

Time

SAP LUW 1

SAP LUW 2

ABC / TXYZ

Program

1

SAP LUW 1

Program

1

Time

FB 'XYZ'

Program

1

CALL FUNCTION 'XYZ' ...

SUBMIT ABC AND RETURN.

CALL TRANSACTION 'TXYZ'

Program

1

Time

SAP LUW 1

SAP LUW 2

Call

SAP

LUWs involved

SUBMIT ABC.

LEAVE TO TRANSACTION

'TXYZ'.

ABC / TXYZ

· Function modules run in the same SAP LUW as the program that calls them.

· Programs that are called using SUBMIT AND RETURN , CALL TRANSACTION,SUBMIT,or LEAVE TO TRANSACTION run separately in their own SAP LUW. This means their update requests receive their own update key!

· If you have SUBMIT AND RETURN and CALL TRANSACTION, the SAP LUW of the calling program is continued as soon as the calling program is completed. The LUWs of calling and called programs are run independently of one another, therefore the following happens:

· Direct inline changes are updated to the database at each screen change.

· Both update flags and calls using PERFORM ON COMMIT require a separate COMMIT WORK in the corresponding SAP LUW.

· If SUBMIT and LEAVE TO TRANSACTION are used, the SAP LUW of the calling program ends. Direct inline changes were updated at each screen changed to the database. However, if you have not concluded your update flags using COMMIT WORK before the program call, these are not closed in the log table with the corresponding update key, and will therefore not be executed by the update work process. The same applies to change routines flagged with PERFORM ON COMMIT.

[image: image21.wmf]ã

SAP

AG 2002

SAP

LUWs for

CALL TRANSACTION

CFIUT

'F2'

CFIUT

'F1'

F1

CALL TRANSACTION

CFIUT = CALL FUNCTION IN UPDATE TASK

SAP LUW 1

SAP LUW 2

Continued

SAP LUW 1

Update

of

SAP LUW 1

CFIUT

'F3'

COMMIT

WORK

CFIUT

'F4'

COMMIT

WORK

F4

Update

of

SAP LUW 2

F2

F3

· If you call up transactions with nested calls, each transaction needs its own COMMIT WORK because each transaction maps its own SAP LUW.

· The same applies to executable programs that are called using SUBMIT <program> AND RETURN.

· An implicit or explicit DB commit in the called transaction also updates all the completed inline changes of the calling program.

[image: image22.wmf]ã

SAP

AG 2002

Call

Mode in CALL TRANSACTION

CFIUT

'F1'

CALL TRANSACTION 'T1'

USING <BDC

-

itab

>

MODE 'A'/'N'/'E'

UPDATE

'S'

.

CFIUT = CALL FUNCTION IN UPDATE TASK

SAP LUW 2

CFIUT

'F2'

COMMIT WORK

F1

F2

SAP LUW 1

CALL TRANSACTION 'T1'

USING <BDC

-

itab

>

MODE 'A'/'N'/'E'

UPDATE

'S'

.

. . .

CFIUT

'F3'

SAP LUW 3

CFIUT

'F4'

. . .

Continued

SAP LUW 1

Update

of

SAP LUW 2

. . .

Continued

SAP LUW 1

COMMIT WORK

F3

F4

Update

of

SAP LUW 3

waiting

· If a transaction is called from within a program using CALL TRANSACTION, you can also have the transaction executed without user dialog (that is, in the background). For this purpose, you need to supply an internal table in batch-input format (see the online documentation for the CALL TRANSACTION) using the USING addition. This table contains the filled transaction screens. Also, you should specify the MODE parameter for the call with N (do not display).

· Additional values for the MODE parameter are A ("display" = default) and E ("only display if error").

· Using the call parameter UPDATE, you can overwrite the default update mode for the transaction to be called, which is usually asynchronous. Possible values for the UPDATE parameter include A (asynchronous = default) , S (synchronous), and L (local) .

· If you have UPDATE = 'S',processing of the calling program will be continued only when the updating triggered by the called transaction is completed. The success of the update is returned through the system field sy-subrc. You use UPDATE = 'S' if subsequent processing after the transaction to be called is dependent upon the success of the transaction.

· For more information, refer to the keyword documentation in the ABAP Editor for CALL TRANSACTION.

[image: image23.wmf]ã

SAP

AG 2002

SAP

LUWs

in

Asynchronous Function Calls

CALL FUNCTION 'ABC'

STARTING NEW TASK 'T1'

...

SAP LUW 1

. . .

Continued

SAP LUW 1

. . .

SAP LUW 2

Program

A

Function module

ABC

. . .

Session 1

Session 2

· A function module that was called asynchronously runs in a separate session and therefore creates its own SAP LUW.

· The processing of the calling program is interrupted briefly; after the function module has been triggered, processing is continued. This means that registered update flags and PERFORM ON COMMIT subroutines are retained.

· The asynchronous function module call triggers an implicit database commit in the calling program. This means that inline changes processed up to that point will be updated to the database.

[image: image24.wmf]ã

SAP

AG 2002

Ability

to

Accumulate Locks for Program Call

Internal session

1

Internal session

2

Lock

Lock

table

table

E

lock

External session

2

Function group

External session

1

Session

Program

B

Internal session

1

Program

C

Program

A

· If a lock of type E was set in the program for a data record, you can have additional locks of type E set in the same program or in a function module that was called synchronously. The cumulation counter of the original lock is increased only by 1.

· However, you cannot set additional locks to existing ones from within a program called using SUBMIT AND RETURN or CALL TRANSACTION. Any lock attempts from such programs will be rejected with the exception FOREIGN_LOCK .

· If you have a program called using SUBMIT or LEAVE TO TRANSACTION, the calling program will be terminated immediately. All the locks set up to that point will be automatically deleted. Therefore, no lock conflicts between the calling and the called program can arise.

· Lock requests of the same user from different SAP R/3 windows (external sessions) or sessions will be treated as lock requests from different users.

[image: image25.wmf]ã

SAP

AG 2002

Implementation

of

Different

Program Calls

Call

Data

SAP

LUW

Suitable for

CALL FUNCTION

Own

Own

Own

Own

Own

Same

SUBMIT AND RETURN

CALL TRANSACTION

CALL FUNCTION ...

STARTING NEW TASK

-

Data display

-

Data change

(

within the same

LUW)

-

Data display

-

Data change

(in different

LUWs

)

-

Parallel

tasks

· Programs called through SUBMIT AND RETURN or CALL TRANSACTION have their own independent SAP LUW. You can use these to perform nested (complex) LUW processing.

· Asynchronously called function modules are suitable for tasks that can be processed in parallel. An asynchronously called function module runs in a new session and therefore has its own independent SAP memory. You should therefore use the function module interface for data transfer.

· Sample application of the asynchronous function call:
In your program, you want to call up a display transaction that is displayed in a separate window (amodal). Call a function module asynchronously that itself calls the transaction through CALL TRANSACTION. Using the function module interface, you pass on the values that are written to the SAP memory (as data transfer to the transaction) before the transaction is called.

[image: image26.wmf]ã

SAP

AG 2002

Complex

LUW

Processing

:

Unit Summary

l

Call existing programs from your program using

different

techniques

l

Explain the runtime architecture and the storage

access options of these programs

l

Appropriately implement the

different

methods for

data transfer between your program and the

programs called from within your program

l

Explain the

LUW

logic for program

-

controlled

program calls

l

Perform complex

LUW

processing

l

Use the

SAP

lock mechanism for complex

LUW

processing

You are now able

to:

Exercises

	[image: image27.png]

	Unit: Complex LUW Processing

	[image: image28.png]

	At the conclusion of these exercises, you will be able to:

· Use the CALL TRANSACTION <tcode> technique for modularization at program level

· Use the SAP memory to transfer data

	[image: image29.wmf]
	You can enter new bookings in the program SAPMZ##_BOOKINGS3 (screen 300). However, if the customer making the booking is not yet maintained in the system, you can create this customer using the icon Create New Customer (function code NEW_CUSTOM) on screen 300 (before you enter his or her booking).
For this purpose, use CALL TRANSACTION to call the program SAPMZ##_CUSTOMER2 or the corresponding transaction Z##_CUSTOMER2. You created this program in exercise 1 for the unit, Updating Databases with Open SQL, and enhanced it in the optional part of exercise 1 for the unit, SAP Locking Concept.

	[image: image30.jpg]

	Program:

SAPMZ##_BOOKINGS4
Transaction code:
Z##_BOOKINGS4
Template:
SAPBC414T_BOOKINGS_04 /

SAPBC414T_CREATE_CUSTOMER_03

Model solution:
SAPBC414S_BOOKINGS_04 /

SAPBC414S_CREATE_CUSTOMER

1-1
Copy your solution SAPMZ##_BOOKINGS3 or the program template SAPBC414T_BOOKINGS_04 with all subobjects to SAPMZ##_BOOKINGS4 (## is your group number).
Assign transaction code Z##_BOOKINGS4 to the program.

1-2
Copy your solution SAPMZ##_CUSTOMER2 or the program template SAPBC414T_CREATE_CUSTOMER_03 with all subobjects to SAPMZ##_CUSTOMER3 (## is the group number) and assign transaction code Z##_CUSTOMER3 to the program.

1-3
Create a new customer using an icon from within the flight booking program SAPMZ##_BOOKINGS4 (screen 300). Enclose the transaction call in the subroutine CREATE_NEW_CUSTOMER. The subroutine is called up from the PAI module USER_COMMAND_0300 (screen 300) and is already created (empty).

1-3-1
Implement the transaction call. Call your transaction Z##_CUSTOMER3.

1-4
The new customer number is defined through internal number assignment within the called program SAPMZ##_CUSTOMER3, that is, it is assigned automatically by the program. The SAP memory should be used (see note 1 below) for transferring the customer number to the calling program (for display on the flight booking screen 300/301).

1-4-1
Change the SAPMZ##_CUSTOMER3 program so that the customer number is written to the SAP memory after a customer has been created successfully (see note 2 below).

1-4-2
Change the calling program SAPMZ##_BOOKINGS4 so that the customer number appears in the appropriate field of subscreen 301 after a customer has been created successfully (see note 3 below).

	[image: image31.wmf]
	1. You can display the name of the SET/GET parameter that is assigned to this field using F1 Help on a screen field.
In this example use F1 Help on the Customer Number field of the subscreen 301 in the flight booking program SAPMZ##_BOOKINGS4.

2. In the SAPMZ##_CUSTOMER3 program, a customer number is determined for the new customer to be created and stored in the field SCUSTOM-ID by calling the subroutine NUMBER_GET_NEXT
3. There are two implementation options:

 a) Setting the internal program field that supplies the screen field with data: The Customer Number field on subscreen 301 is supplied with data from the internal program field WA_SBOOK.)

 b) Using the GET functions of the screen field to determine field properties

	
	

Solutions

	[image: image32.png]

	Unit: Complex LUW Processing

Model Solution SAPBC414S_BOOKINGS_04
1 FORM Routines
2 F01
--

***INCLUDE BC414S_BOOKINGS_04F01 .
--

&---

*& Form CREATE_NEW_CUSTOMER
&---

FORM create_new_customer.
 CALL TRANSACTION 'BC414S_CREATE_CUST'.
 GET PARAMETER ID 'CSM' FIELD wa_sbook-customid.
* Alternative solution using the GET function of
* the screen field for customer ID
* CLEAR wa_sbook-customid.
ENDFORM. " CREATE_NEW_CUSTOMER
Model Solution SAPBC414S_CREATE_CUSTOMER
3 FORM Routines
4 F01
--

***INCLUDE BC414S_CREATE_CUSTOMERF01 .
--

&---

*& Form SAVE_SCUSTOM
&---

FORM save_scustom.
 INSERT INTO scustom VALUES scustom.
 IF sy-subrc <> 0.
 MESSAGE a048.
 ELSE.
 SET PARAMETER ID 'CSM' FIELD scustom-id.
 MESSAGE s015 WITH scustom-id.
 ENDIF.
ENDFORM. " SAVE_SCUSTOM
© SAP AG
TAW12
18-1

