
0 [image: image1.wmf]ã

SAP

AG 2002

l

Updates

from Within the Application Program

n

Directly

n

Using Delayed Subroutines

l

Updates

Using Specific Techniques

n

Asynchronous

,

Synchronous

,

and Local

Updates

n

V1

and

V2 Updates

Contents

:

Organizing Database

Updates

[image: image2.wmf]ã

SAP

AG 2002

l

Execute database changes

in

bundled form

directly from within the application program

l

Perform database changes using various update

techniques

l

Use and create update modules

l

Implement update types

V1

and

V2

l

Implement the

SAP

locking concept

in

accordance with the selected change type

At the conclusion of this unit

,

you

will

be able

to:

Organizing Database

Updates:

Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Overview of Program

Updates:

Directly

Updates

from Within the Program

Updates

from Within the Program

Directly

Directly

Using Delayed Subroutines

Using Delayed Subroutines

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image4.wmf]ã

SAP

AG 2002

Timescale

UPDATE tab1.

UPDATE tab2.

...

UPDATE tab1.

Time

UPDATE tab2.

Last

dialog

step

SAP

Transaction

· If your transaction executes database updates from within the dialog program, you must bundle all of your database updates into a single dialog step (usually the last). This is the only way to ensure that your database changes are processed using the "all or nothing" principle.

[image: image5.wmf]ã

SAP

AG 2002

Data Flow

Dialog

step

1

Dialog

step

2

Last

dialog

step

Data

. . .

Data

Data

SAP

Transaction

Time

Data

Data

Global

Program Data

. . .

· If you have updates executed from the dialog program, you must save the data you want to change in the global program data until the database changes are made. This data is written to the database with the status it had for the last dialog step.

[image: image6.wmf]ã

SAP

AG 2002

Locks

Data

selection

Lock

data

Read data

1

1

Lock

duration

Time

2

2

Change data

Release locks

4

4

3

3

· If you update the database directly from within the program, your program must set and release SAP locks itself. Use the specified sequence of steps (see the unit SAP Locking Concept).

1. Lock data
2. Read data (+ display for change)
3. Change data in database
4. Unlock data

· Remember that your program must delete the lock entries. For this purpose you can execute either the unlock module DEQUEUE__<lock object>, which belongs to the lock object, or the general unlock function module DEQUEUE_ALL.

[image: image7.wmf]ã

SAP

AG 2002

Overview

-

Updates

from Within the Program

:

Using Delayed Subroutines

Updates

from Within the Program

Updates

from Within the Program

Directly

Directly

Using Delayed Subroutines

Using Delayed Subroutines

Changes using update techniques

Changes using update techniques

[image: image8.wmf]ã

SAP

AG 2002

PERFORM ON COMMIT:

Timescale

(1)

COMMIT

WORK.

PERFORM x

ON COMMIT.

PERFORM y

ON COMMIT.

No

Subroutine

1 x

2 y

System

table

SAP

Transaction

Time

· Database updates from dialog mode can be executed in bundled form by using the special subroutine technique PERFORM <subroutine> ON COMMIT.

· The statement PERFORM <subroutine> ON COMMIT registers the subroutine that has been specified. This will not be executed until the system reaches the next COMMIT WORK statement.

· If the database updates are encapsulated in the subroutines, they can be separated from the program logic and relocated to the end of the LUW processing.

· Each subroutine registered with PERFORM ON COMMIT is executed only once per LUW. Calls can be made more than once (no errors); the subroutine, however, is executed only once.

· Nested PERFORM ON COMMIT calls after release 4.6 trigger a runtime error.

[image: image9.wmf]ã

SAP

AG 2002

PERFORM ON COMMIT:

Timescale

(2)

COMMIT

WORK.

No

Subroutine

1 x

2 y

System

table

SAP

Transaction

Time

FORM x.

UPDATE tab1 ...

IF

sy

-

subrc

NE 0.

MESSAGE A ...

ENDIF.

ENDFORM.

FORM x.

UPDATE tab1 ...

IF

sy

-

subrc

NE 0.

MESSAGE A ...

ENDIF.

ENDFORM.

FORM y.

UPDATE tab2 ...

IF

sy

-

subrc

NE 0.

MESSAGE A ...

ENDIF.

ENDFORM.

FORM y.

UPDATE tab2 ...

IF

sy

-

subrc

NE 0.

MESSAGE A ...

ENDIF.

ENDFORM.

DB

Commit

· The COMMIT WORK statement carries out all subroutines registered to be executed, one after the other, and triggers a database commit.
· If there is an error, you can terminate processing from the respective subroutine with a dialog message A (MESSAGE A); the previous consistent database status can be restored with a type A dialog message and the previous consistent database status can be restored.

[image: image10.wmf]ã

SAP

AG 2002

PERFORM ON COMMIT:

Data Flow

Dialog

step

1

Dialog

step

2

COMMIT

WORK

. . .

SAP

Transaction

Time

Data

Data

Data

Global

Program Data

FORM x.

...

ENDFORM.

FORM x.

...

ENDFORM.

FORM y.

...

ENDFORM.

FORM y.

...

ENDFORM.

1

2

· Subroutines called using PERFORM ON COMMIT must have no interface. They work instead with global data, that is, with the values the data objects contain at the point when the subroutine is actually run.

· The PERFORM ON COMMIT technique can also be used in the update. This will be discussed later.

· For further information, see the ABAP Editor keyword documentation for PERFORM.
[image: image11.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using Specific Techniques

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image12.wmf]ã

SAP

AG 2002

Summary

:

Updates

from Within the Program

Features

(

"Simple"

concept

,

implemented quickly

But

:

(

User has

to

wait until the changes have been made

(

Dialog

work process is

not

released

(

No error logging

(

Several

DB

work processes working

parallel =>

Poor

DB

performance

(

No support through system functions if

LUW

processing and use of locking

concept

(

must

all

be implemented

in

the program

)

Therefore usage only for

:

(

"

Light

"

LUWs

,

that is

,

LUWs containing only single record updates or

updates that are

not

critical for performance

[image: image13.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using Specific Techniques

:

Process

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image14.wmf]ã

SAP

AG 2002

Update

Principle

Work process

Dialog

program

Work process

SAPGUI

Update

program

· Update techniques allow you to separate user dialogs from the database changes. Both are executed by different programs, which generally run in different work processes.

· The user uses a dialog program to execute dialogs. A dialog program accepts user entries and, at the end, when it passes on the changed data, triggers an update program that updates the corresponding data in the database.

· No dialogs run in the update programs.

· The following slides describe the various steps in a program that uses an update technique.

[image: image15.wmf]ã

SAP

AG 2002

Process

:

Writing Requests

Log

table

Work process

1

1

Data

Work process

Update

program

Dialog

program

Request

n

Request

1

. . .

· Step 1: The dialog program receives the data updated by the user and writes it to a special log table. The entries in this table are of a request type. The data contained in them will be written to the database later by program.

· A dialog program can write several entries to the log table.

· The entries in the log table represent an LUW, in other words, they will either be executed in the database together or not at all ("all or nothing" principle).

[image: image16.wmf]ã

SAP

AG 2002

Process

:

Completing Requests

Log

table

Request

n

Request

1

. . .

Work

process

Work process

Update

program

1

1

Data

Dialog

program

2

2

· Step 2: The dialog program closes the logical data packet (LUW) that was written to the log table. It also informs the Basis system that there is a packet to update.

[image: image17.wmf]ã

SAP

AG 2002

Process

:

Having Requests Read

Log

table

Request

n

Request

1

. . .

Work process

Work process

Update

program

1

1

Data

Dialog

program

2

2

3

3

Data

· Step 3: A Basis program reads the data associated with the LUW from the log table and supplies it to the update program.

[image: image18.wmf]ã

SAP

AG 2002

Process

:

Performing Database

Updates

Log

table

Request

n

Request

1

. . .

Work process

Work process

Update

program

1

1

Data

2

2

3

3

Data

4

4

Dialog

program

· Step 4: The update program accepts the data transferred to it and updates the database entries.

[image: image19.wmf]ã

SAP

AG 2002

Process

:

Deleting Requests

Log

table

Request

n

Request

1

. . .

Work process

Work process

1

1

Data

2

2

3

3

Data

4

4

Update

program

5

5

Delete

Dialog

program

· Step 5: If the update program runs successfully, a Basis program deletes all entries for the LUW from the log table.

· In the event of an error, the entries remain in the log table. They are flagged as incorrect. The user who has triggered the update is generally informed by express e-mail about the error.

· You can set the option of informing users by e-mail that an update action has failed using the profile parameters rdisp/vbmail and rdisp/vb_mail_user_list. .

· The parameter rdisp/vbmail can be given the value 1 or 0 (mail dispatch if error or not).

· The value given to rdisp/vb_mail_user_list defines who is to be contacted if there is an error. The value $ACTUSER means that the user who has created the data record to be updated will be informed.

· Transaction SM13 is used to monitor update requests.

[image: image20.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using Specific Techniques

-

Technical

Implementation

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image21.wmf]ã

SAP

AG 2002

Update

Modules

FUNCTION x.

UPDATE ...

INSERT ...

DELETE ...

MODIFY ...

MESSAGE A ...

ENDFUNCTION.

FUNCTION x.

UPDATE ...

INSERT ...

DELETE ...

MODIFY ...

MESSAGE A ...

ENDFUNCTION.

Function module

DB

DB

Data

Processing type

Normal

function module

Remote

-

capable module

Update

module

Immediate start

. . .

Properties

Typing for the

interface parameters

· Technical implementation of the update concept requires, in addition to the program that monitors the user dialog, an update program that must be implemented as a special function module (update module).

· Update modules, like other function modules, have an interface for transferring data. The interface for update function modules only includes IMPORTING and TABLES parameters. These must be typed using reference fields or structures.

· Export parameters and exceptions are ignored in update modules.

· The function module contains the actual database update statements.

[image: image22.wmf]ã

SAP

AG 2002

Writing

/

Closing Requests

Log

table

PROGRAM ...

.

.

.

a = 1.

CALL

FUNCTION

'F1'

EXPORTING p1 = a

p2 = ...

.

.

.

b = 2.

CALL

FUNCTION

'F2'

EXPORTING q1 = b

.

.

.

a = 3.

CALL

FUNCTION

'F3'

EXPORTING s1 = a

...

PROGRAM ...

.

.

.

a = 1.

CALL

FUNCTION

'F1'

EXPORTING p1 = a

p2 = ...

.

.

.

b = 2.

CALL

FUNCTION

'F2'

EXPORTING q1 = b

.

.

.

a = 3.

CALL

FUNCTION

'F3'

EXPORTING s1 = a

...

F1

P1 = 1

P2 = ...

F2

Q1 = 2

Q2 = ...

F3

S1 = 3

S2 = ...

LUW HEADER

COMMIT WORK.

COMMIT WORK.

VB

Key

VB

Key

VB

Key

VB

Key

Update

initiation

Update

initiation

Dialog

program

IN UPDATE TASK

IN UPDATE TASK

IN UPDATE TASK

· You create update requests from the dialog program by calling the respective update function module. Use the IN UPDATE TASK addition. This means that the function module is not executed immediately, but is written to the log table, together with the input data, as an execution request.

· All of the update requests in an SAP LUW are stored under the same update key. The update key is a unique worldwide identification code for an SAP LUW.

· Only when the system finds a COMMIT WORK statement will it create a header entry for the requests that belong together (log header). Then the system closes the unit. The log header contains information on the dialog program that wrote the log entries and information on the update modules to be executed.

· After the log header is created, the system informs the dispatcher that an update package is ready for processing.

[image: image23.wmf]ã

SAP

AG 2002

Discarding Requests

(Generation Phase)

Log

table

. . .

Request

1

Request

2

ROLLBACK WORK.

ROLLBACK WORK.

MESSAGE A ...

MESSAGE A ...

or

CALL FUNCTION x

CALL FUNCTION x

IN UPDATE TASK ...

IN UPDATE TASK ...

Dialog

program

...

...

Delete

all

requests

written

up to

now

(

and lock

)

Delete

all

requests

written

up to

now

(

and lock

)

· Sometimes you may need to discard all change requests that were written up to now for the current SAP LUW. This is the case, for example, when you terminate the transaction.

· To discard the current SAP LUW during the generation phase, use the ABAP statement ROLLBACK WORK or send a type A dialog message. Both procedures
 - Delete all change requests written up to that point
 - Delete all the locks set up to that point
 - Discard all the changes executed in the current DB LUW
 - Discard all the form routines registered using PERFORM ON COMMIT.

· The ROLLBACK WORK statement does not affect the program context. In other words, all data objects (program-specific objects and objects from function groups that may be used) remain unchanged, and they are not reset.

[image: image24.wmf]ã

SAP

AG 2002

Discarding Requests

(

Processing

Phase)

Log

table

Request

n

Request

1

. . .

Work process

2

...

UPDATE

...

IF

sy

-

subrc

NE 0.

MESSAGE A

...

ENDIF.

Update

module

+

DB

rollback

Termination of

LUW

processing

ROLLBACK WORK.

COMMIT WORK.

· The task of an update module is to pass the requests for database updates to the database and to evaluate their return codes.

· If you want to trigger a database rollback in the update module, issue a type A dialog message. This also terminates the processing of the current SAP LUW. The log entry belonging to the SAP LUW is flagged as containing an error. The termination message is also entered in the log.

· You can examine the log entry using transaction SM13.

· The system sends an express mail to the relevant user, telling him or her that the LUW update was terminated. For this purpose, you must set the profile parameters rdisp/vbmail and rdisp/vb_mail_user_list accordingly:

· The parameter rdisp/vbmail can be given the value 1 or 0 (mail dispatch if error or not).

· The value given to rdisp/vb_mail_user_list defines who is to be contacted if there is an error. The value $ACTUSER means that the user who has created the data record to be updated will be informed.

· You may not use the explicit ABAP statements COMMIT WORK or ROLLBACK WORK in an update module.

[image: image25.wmf]ã

SAP

AG 2002

Setting Locks

in

the

Update

Data

selection

Locking using

_

scope

= 2

Read

1

1

Lock

duration

2

2

4

4

3

3

CFIUT ...

COMMIT WORK.

CFIUT = CALL FUNCTION IN UPDATE TASK

Update

work

process

Update

module

UPDATE ...

Change

Lock

transfer

Lock

release

by the system

5

5

· If you have locks set in a dialog program that works with the update technique and these locks have been set using _SCOPE = 2, you can pass these on to the update task at COMMIT WORK. After this, they are no longer accessible by the dialog program.

· You do not need to release the locks explicitly in the update modules because a Basis program at the end of the update process automatically releases the locks.

· This automatic release of locks by the update task will also take place if there is an error, that is, if one of the update modules terminates and rolls back LUW processing through the output of a termination dialog message.

· If the update modules allow failed update requests to be reprocessed (see V1 update), the database in the database tables at the point of reprocessing may be different from that at the point of the failed update attempt. Also, reprocessing generally takes place without locks because locks are automatically deleted by the update task if there is an error.

· For example, reprocessing is appropriate if a document was not written successfully to the database because of an overflow of table spaces.

[image: image26.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using Specific Techniques

:

Update

Modes

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image27.wmf]ã

SAP

AG 2002

Asynchronous

Update

Request

n

Request

1

. . .

Log

table

VBLOG

DB

DB

Dialog

work

process

Time

Update

work

process

Dialog

program

LUW 1

LUW 2

COMMIT WORK.

Processing

LUW 1

· In asynchronous updates, the dialog program and update program run separately.

· The dialog program writes the change requests to the log table and closes the LUW with a COMMIT WORK.

· The update initiated by the COMMIT WORK now processes the change requests. The dialog program is continued; the system does not wait for the update to end.

· The update program runs in a special update work process. This can be on an application server other than the one used for the SAP R/3 System.

· Asynchronous updates are useful in transactions where the database updates take a long time and the perceived performance by the shorter user dialog response time is important.

· Asynchronous updating is the standard technique used in dialog processing.

· You can implement the log table VBLOG as a cluster file in your system, or replace it with the transparent tables VBHDR, VBMOD, VBDATA, and VBERROR.

[image: image28.wmf]ã

SAP

AG 2002

Synchronous

Update

Text

Request

n

Request

1

. . .

Log

table

VBLOG

DB

DB

Dialog

work

process

Time

Update

work

process

Dialog

program

LUW 1

LUW 2

COMMIT WORK

AND WAIT.

Processing

LUW 1

IF

sy

-

subrc

= 0.

· If you have a synchronous update that is triggered by COMMIT WORK AND WAIT, the dialog program waits for the update to end before program processing is continued.
· You use this update mode if further processing or dialog program terminationdepends on the update result.

· You can query the processing success of the synchronous update using the system field sy-subrc.

· During the entire waiting phase, the dialog program is in a "rolled out" state. This means that the respective dialog work process is released for further use. When the update is complete, the system again assigns a free dialog work process for further processing.

[image: image29.wmf]ã

SAP

AG 2002

Local

Update

Main

memory

DB

DB

Dialog/

batch

work process

Time

Dialog

program

LUW 1

LUW 2

COMMIT WORK.

Processing

LUW 1

SET UPDATE

TASK LOCAL.

Request

n

Request

1

. . .

Log

table

· In local updates, the update functions are run in the same dialog process used by the dialog program containing the dialog program (that is, locally). Processing of the dialog program is continued when the update is completed (synchronous).

· To have update modules executed locally, you must use the SET UPDATE TASK LOCAL statement before you write the respective requests. Close the written requests with the COMMIT WORK statement, and these will be processed in the same dialog work process.

· After the local update has been processed successfully, a DB commit is initiated explicitly and the dialog program is continued.

· If there is an error and a termination message is dispatched by one of the update modules, the system executes an automatic DB rollback to discard the changes in the current LUW and the dialog program is terminated by the display of a termination message.

· In the local update mode, change requests are not written to the database table VBLOG, but kept in main memory. Due to the missing IO accesses, this is quicker than for synchronous or asynchronous updates. The disadvantage, however, lies in the exclusive use of a work process. Therefore, local updates are appropriate in batch mode only.

· SET UPDATE TASK LOCAL is possible only if no requests were created for the current LUW. This statement works only until the next COMMIT WORK.

[image: image30.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using SpecificTechniques

:

V1

and

V2 Updates

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image31.wmf]ã

SAP

AG 2002

Types of

Update

Modules

(V1/V2)

Function

Module

-

Properties

.

.

.

Update

module

Immediate start

Immediate start

-

no restart possible

Start

delayed

Collective run

Processing

type

Normal

function module

Remote

-

capable module

V1

V2

· There are two types of update modules: V1 and V2. The type of update module determines its processing mode. To begin with, all V1 requests in the dialog program are executed as independent DB LUW. Only if the V! requests are executed successfully are V2 requests processed, also as independent LUWs (thus V1 then V2 update phase).

· V2 update modules are used for database changes that are linked to the V1 changes (main changes) but do not necessarily have to be executed in the same DB LUW (for example, updating of statistics).

· V1 modules can be restartable or non-restartable. If an update error occurs, you can manually restart requests that were created by restartable update modules using transaction SM13. You do this after you have cleaned up the application error in question. V2 update modules can always be restarted for processing if there was an error.

· The classification collective run is used internally by SAP for V2 modules. It is a special type of V2 update. Corresponding requests are not executed directly after the V1 update, but only after the collector program RSM13005 (generally planned ahead) has been called.

[image: image32.wmf]ã

SAP

AG 2002

Generating

V1

and

V2

Requests

Request

n

(V2)

Request

1 (V2)

. . .

(V2)

Request

m

(V1)

Request

1 (V1)

. . .

(V1)

VBLOG / Main

memory

VBLOG

Dialog

work

process

Time

Dialog

program

LUW

COMMIT WORK

(AND WAIT).

Call

V1

modules

Call

V2

modules

· The flow diagrams displayed in the previous sub-units always show V1 requests that were created by V1 update modules.

· V1 update modules create requests in the VBLOG table for synchronous and asynchronous updates. For local updates, the V1 requests are retained in the main memory.

· V2 requests are always stored in the VBLOG table.

[image: image33.wmf]ã

SAP

AG 2002

Update

Execution

Request

n

(V2)

Request

1 (V2)

. . .

(V2)

Request

m

(V1)

Request

1 (V1)

. . .

(V1)

VBLOG / Main

memory

VBLOG

Dialog

work

process

Time

Dialog

program

LUW

COMMIT WORK

(AND WAIT).

DB

DB

V1

update work

process

V2

update work

process

Processing

V1

requests

Onlv if

V1

successful

DB LUW 1

DB LUW 2

Processing

V2

requests

· V1 requests are processed in a V1 update work process as an independent DB LUW. If the V1 update is successful, the system deletes the V1 requests and all the locks passed on to the update task, sets a DB Commit, and triggers the V2 update.

· V2 requests are executed in a V2 update work process. These, too, form an independent DB LUW. If no V2 update work process is set up in SAP R/3, V2 requests are executed in a V1 update work process. If all the V2 requests were processed successfully, they are removed from the VBLOG table and the system also sets a DB commit. V2 requests generally run without locks because they were already deleted after completion of the V1 update.

· If the V1 update module terminates the V1 update with a termination message, all the locks passed on to the update task are deleted, a DB rollback takes place, an e-mail is sent to the user who created the LUW, and the V1 requests are flagged as incorrect in the VBLOG with the corresponding termination message. The V2 update is not triggered.

· However, if the V2 update is terminated by a termination message of a V2 update module, the system triggers a database rollback. All of the V2 changes in the SAP LUW are undone and the V2 requests in VBLOG are flagged as incorrect with the corresponding termination message.

[image: image34.wmf]ã

SAP

AG 2002

Setting Locks

in

the

Update

Dialog

work

process

Time

Dialog

program

LUW

COMMIT WORK

(AND WAIT).

DB

DB

V1

update work

process

V2

update work

process

DB LUW 1

DB LUW 2

Processing

V2

requests

Lock

duration

Lock

transfer

Automatic removal of

all

locks

after

V1

update

_

scope

= 2

Set

lock

Processing

V1

requests

· The locks created from within the dialog program using _SCOPE = 2 (default) are transferred to the V1 update task at COMMIT WORK (AND WAIT). At the end of the V1 update, they are automatically deleted, regardless of whether the V1 update was successful or whether the update was terminated by an error with issue of a termination message.

· Therefore, lock entries must not be explicitly removed either in the dialog program (too early) or in the update module (unnecessary).

· The V2 update always runs without SAP locks.

[image: image35.wmf]ã

SAP

AG 2002

Overview

-

Updates

Using Specific Techniques

:

Optimization

Notes

Optimization

Notes

for Database Changes

Optimization

Notes

for Database Changes

V1

and

V2 Updates

V1

and

V2 Updates

Update

Modes

Update

Modes

Process

Process

Technical

Implementation

Technical

Implementation

Updates

from Within the Program

Updates

from Within the Program

Updates

Using Specific Techniques

Updates

Using Specific Techniques

[image: image36.wmf]ã

SAP

AG 2002

Shortest Possible Database Locks

Changes

to

Table

A

Release of

all

DB

locks

Performance

rules

:

(

Create new entries first

(INSERT)

(

Then perform changes

to

non

-

performance

-

critical tables

(UPDATE)

(

Then perform changes

to

performance

-

critical tables

(UPDATE)

DB

Commit

or

DB

rollback

Changes

to

Table

B

Changes

to

Table

C

DB

lock for entry

in

Table

A

DB

lock for entry

in

Table

B

DB

lock for entry

in

Table

C

· Each time a change is updated to the database, the record to be changed is physically locked by the database up to the end of the current database LUW (DB commit or DB rollback). The same applies if you are reading with SELECT ... FOR UPDATE.

· However, it is a good idea, for performance reasons, to keep such automatically set database locks as short as possible. This is because read accesses to the respective record are not allowed for the duration of the physical lock (they must wait until the record is released by the database) and many programs execute read access without locks..

· For this you should adhere to the following rules when programming inline changes and update modules:

· Create new table entries first. Their database locks pose the least "interference" for other users.

· Perform table updates that are not critical to performance. As a rule, these tables are accessed simultaneously by relatively few users.

· Always change tables that represent central resources in the system (tables accessed by several users simultaneously) late within an LUW, if possible, so that the respective database locks hinder others only for a short time.

[image: image37.wmf]ã

SAP

AG 2002

PERFORM ON COMMIT in

the

Update

Log

table

Request

n

Request

1

. . .

Work process

3

3

Dialog

program

1

1

2

2

COMMIT WORK.

Update

module

1

Update

module

n

UPDATE

...

. . .

POC

POC

1

. . .

POC

processing

POC

m

. . .

Tim

e

UPDATE

...

. . .

POC

DB

commit

POC =

PERFORM ON

COMMIT

· During the update, the goal is to execute changes to central tables (performance-critical, often accessed simultaneously by several users) as late as possible in the LUW. To achieve this, you can use the PERFORM ON COMMIT technique in the update.

· Encapsulate the changes to central tables as form routines within the appropriate function group that belongs to the corresponding update module. Then call the routines from within the update module using PERFORM ON COMMIT. The form routines are then not executed until the last update module has been processed.

· Remember that these form routines must work with the global data of the respective function group.

[image: image38.wmf]ã

SAP

AG 2002

l

Execute database updates directly from within

dialog programs

l

Implement database updates appropriately using

different

update techniques

(

asynchronous

,

synchronous

,

local

),

and

also

use

V1

and

V2

update modules

l

Implement the

SAP

locking concept

in

accordance with the selected change type

You are now able

to:

Organizing Database

Updates:

Unit Summary

Exercises

	[image: image39.png]

	Unit: Organizing Database Updates

	[image: image40.png]

	At the conclusion of these exercises, you will be able to:

· Perform database updates using the asynchronous update technique

	[image: image41.wmf]
	The program SAPMZ##_BOOKINGS2 from the previous unit is to be changed or enhanced so that database updates can be performed using the asynchronous update technique.

Canceling bookings:
To implement the asynchronous update technique, you must adjust the existing source code.

Creating a new booking:
The database dialog part is to be implemented here. The data for a new booking is entered on screen 300. Clicking the Save icon (function code SAVE) on screen 300 will insert the new bookings in the SBOOK table and modify the flight in question in the SFLIGHT table. The updates are to be performed within a DB LUW and using the asynchronous update technique.

	[image: image42.jpg]

	Program:

SAPMZ##_BOOKINGS3
Transaction code:
Z##_BOOKINGS3
Template:
SAPBC414T_BOOKINGS_03
Model solution:
SAPBC414S_BOOKINGS_03

1-1
Copy your solution SAPMZ##_BOOKINGS2 or the program template SAPBC414T_BOOKINGS_03 with all subobjects to SAPMZ##_BOOKINGS3 (## is your group number).
Assign transaction code Z##_BOOKINGS3 to the program.

1-2
Canceling existing bookings:

1-2-1
Function modules UPDATE_SFLIGHT and UPDATE_SBOOK are used to update the table entries in the DB tables SFLIGHT and SBOOK. Can these function modules also be used to perform the updates using the update technique?

1-2-2
Modify your program so that the updates to the DB tables SFLIGHT and SBOOK are performed using the update technique:

· Call the corresponding function modules capable of performing updates in the SAVE_MODIFIED_BOOKING subroutine.

· Insert the COMMIT WORK statement in the PAI module USER_COMMAND_0200.
· Also, be aware of the fact that the locks set using "_SCOPE = 2" are passed to the update program and must not, therefore, be explicitly released in the dialog program.

1-3
Generating a new booking:
To generate a new entry in the DB table SBOOK, use the function module INSERT_SBOOK, which is capable of performing updates. This function module is to be called up in the subroutine SAVE_NEW_BOOKING. The subroutine is called up from the PAI module USER_COMMAND_0300 (screen 300) and is already created (blank).

1-3-1
If you have copied your previous solution program SAPMZ##_BOOKINGS2 as a template for this exercise, you should – when the subroutine SAVE_NEW_BOOKING starts – copy the subroutine CONVERT_TO_LOC_CURRENCY, and pass on WA_SBOOK. This is necessary so that you can fill the corresponding currency fields in WA_SBOOK:
PERFORM convert_to_loc_currency USING wa_sbook.
1-3-2
Call up the function modules INSERT_SBOOK and UPDATE_SFLIGHT, which are capable of performing updates, to update the DB tables SBOOK and SFLIGHT using the update technique.

1-3-3
Insert the COMMIT WORK statement in the PAI module USER_COMMAND_0200.
1-3-4
Lock the flight and the booking by calling up the corresponding lock modules. Call up subroutine ENQ_SFLIGHT and ENQ_SBOOK in the appropriate places.
If a user action calls up screen 100, release the locks.

	[image: image43.wmf]
	The booking data is held in structure WA_SBOOK.

Solutions

	[image: image44.png]

	Unit: Organizing Database Updates

Model Solution SAPBC414S_BOOKINGS_03
1 PAI Modules
--

***INCLUDE BC414S_BOOKINGS_03I01 .
--

&---

*& Module EXIT INPUT
&---

MODULE exit INPUT.
 CASE ok_code.
 WHEN 'CANCEL'.
 CASE sy-dynnr.
 WHEN '0100'.
 LEAVE PROGRAM.
 WHEN '0200'.
 PERFORM deq_all.
 LEAVE TO SCREEN '0100'.
 WHEN '0300'.
* remove all database locks
 PERFORM deq_all.
 LEAVE TO SCREEN '0100'.
 WHEN OTHERS.
 ENDCASE.
 WHEN 'EXIT'.
 LEAVE PROGRAM.
 WHEN OTHERS.
 ENDCASE.
ENDMODULE. " EXIT INPUT
&---

*& Module USER_COMMAND_0100 INPUT
&---

MODULE user_command_0100 INPUT.
 CASE save_ok.
****************************CANCEL BOOKING**************************
 WHEN 'BOOKC'.
 PERFORM enq_sflight_sbook.
 PERFORM read_sflight USING wa_sflight sysubrc.
 PERFORM process_sysubrc_bookc.
 PERFORM read_spfli USING wa_spfli.
 PERFORM read_sbook USING itab_book itab_cd.
 REFRESH CONTROL 'TC_SBOOK' FROM SCREEN '0200'.
****************************CREATE BOOKING**************************
 WHEN 'BOOKN'.
* lock flight in Table SFLIGHT, which will be modified when new
* booking is saved
 PERFORM enq_sflight.
 PERFORM read_sflight USING wa_sflight sysubrc.
 PERFORM process_sysubrc_bookn.
 PERFORM read_spfli USING wa_spfli.
 PERFORM initialize_sbook USING wa_sbook.
 WHEN 'BACK'.
 SET SCREEN 0.
 WHEN OTHERS.
 SET SCREEN '0100'.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT
&---

*& Module USER_COMMAND_0200 INPUT
&---

MODULE user_command_0200 INPUT.
 CASE save_ok.
 WHEN 'SAVE'.
 PERFORM collect_modified_data USING itab_sbook_modify.
 PERFORM save_modified_booking.
* start asynchronous update and new SAP-LUW
 COMMIT WORK.
* database locks should not be removed here since they will be
* removed by the update program later.
 SET SCREEN '0100'.
 WHEN 'BACK'.
 PERFORM deq_all.
 SET SCREEN '0100'.
 WHEN OTHERS.
 SET SCREEN '0200'.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0200 INPUT
&---

*& Module USER_COMMAND_0300 INPUT
&---

MODULE user_command_0300 INPUT.
 PERFORM tabstrip_set.
 CASE save_ok.
 WHEN 'NEW_CUSTOM'.
 PERFORM create_new_customer.
 SET SCREEN '0300'.
 WHEN 'SAVE'.
 PERFORM save_new_booking.
* start asynchronous update and new SAP-LUW
 COMMIT WORK.
* database locks will be removed by update program
 SET SCREEN '0100'.
 WHEN 'BACK'.
* remove all database locks
 PERFORM deq_all.
 SET SCREEN '0100'.
 WHEN OTHERS.
 SET SCREEN '0300'.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0300 INPUT
2 FORM Routines
3 F01
--

***INCLUDE BC414S_BOOKINGS_03F01 .
--

&---

*& Form PROCESS_SYSUBRC_BOOKN
&---

FORM process_sysubrc_bookn.
 CASE sysubrc.
 WHEN 0.
 SET SCREEN '0300'.
 WHEN OTHERS.
* remove all database locks
 PERFORM deq_all.
 MESSAGE e023 WITH sdyn_conn-carrid sdyn_conn-connid
 sdyn_conn-fldate.
 ENDCASE.
ENDFORM. " PROCESS_SYSUBRC_BOOKN
4 F04
--

* INCLUDE BC414S_BOOKINGS_03F04
--

&---

*& Form SAVE_MODIFIED_BOOKING
&---

FORM save_modified_booking.
 CALL FUNCTION 'UPDATE_SBOOK' IN UPDATE TASK
 EXPORTING
 itab_sbook = itab_sbook_modify.
* no exception handling when using asynchronous update technique
 PERFORM update_sflight.
ENDFORM. " SAVE_MODIFIED_BOOKING
&---

*& Form UPDATE_SFLIGHT
&---

FORM update_sflight.
 CALL FUNCTION 'UPDATE_SFLIGHT' IN UPDATE TASK
 EXPORTING
 carrier = wa_sflight-carrid
 connection = wa_sflight-connid
 date = wa_sflight-fldate.
* no exception handling when using asynchronous update technique
ENDFORM. " UPDATE_SFLIGHT
&---

*& Form SAVE_NEW_BOOKING
&---

FORM save_new_booking.
 PERFORM convert_to_loc_currency USING wa_sbook.
* lock booking on DB table sbook to be created
 PERFORM enq_sbook.
 CALL FUNCTION 'INSERT_SBOOK' IN UPDATE TASK
 EXPORTING
 wa_sbook = wa_sbook.
* no exception handling when using asynchronous update technique
 PERFORM update_sflight.
ENDFORM. " SAVE_NEW_BOOKING
© SAP AG
TAW12
17-1

