
0 [image: image1.wmf]ã

SAP AG 1999

l

Input/output fields

l

Input help

l

Checkboxes and radio button groups

l

Pushbuttons

Contents:

Screen Elements for Input/Output

[image: image2.wmf]ã

SAP

AG 2002

l

Use input/output fields, checkboxes, radio button

groups, and pushbuttons in your programs.

At the conclusion of this unit, you will be able to:

Unit Objectives

LH

400

Display

Cancel

Selection 1

Selection 2

Option 1

Option 2

Selection 3

!

[image: image3.wmf]ã

SAP

AG 2002

Overview Diagram

V

Flight

4

5

6

7

8

9

2

3

· Unit
1

Course Overview

· Unit
2

Introduction to Screen Programming

· Unit
3

The Program Interface

· Unit
4

Screen Elements for Output

· Unit
5

Screen Elements for Input/Output
· Unit
6

Screen Elements: Subscreens and Tabstrip Controls

· Unit
7

Screen Elements: Table Controls

· Unit
8

Context Menus

· Unit
9

Lists in Screen Programming

[image: image4.wmf]ã

SAP AG 1999

Input/output fields

Input/output fields

Checkboxes and radio button groups

Checkboxes and radio button groups

Pushbuttons

Pushbuttons

Input/Output Elements: Input/Output Fields

Input help

Input help

[image: image5.wmf]ã

SAP

AG 2002

Input/Output Fields

Displaying and receiving data

at the front end

n

Automatic field input checks

n

Data consistency checks

(check table)

n

Input helps

PROGRAM sapmzxxx.

...

ABAP

ABAP

LH

· An input field is a rectangular screen element in which users enter data.

· An output field is a rectangular screen element in which the system displays text or other data.

· Input/output fields are also known as templates.

· Input fields may have automatic field input checks that relate to their data type (for example, date fields will allow you to enter a valid date only).

· Input fields that you create with reference to ABAP Dictionary fields may have built-in data consistency checks (foreign key checks, and value sets).

· Input fields may have possible values help.

· For further information about input/output fields, see the online documentation, INP-1.

[image: image6.wmf]ã

SAP

AG 2002

Input/Output Fields: Attributes

Program

General

l

Name

l

Text

l

Dropdown

l

Icon display

-

Icon name

-

Quickinfo

l

Start position

l

Size

-

Static

-

Dynamic

l

Scrollable

l

Modif. groups

l

Context menu

l

Dialog behavior

-

Input field

-

Output field

-

Output only

-

Required

l

Input help

-

W/ w/o input help

-

Input help button

l

Output options

-

Right

-

justified

-

Leading zeros

l

Input options

-

* input possible

-

W/O reset

-

Without template

l

Fixed font

l

Bright

l

Invisible

l

2 dimensional

l

Reacts to

double

-

click

l

Web display

properties

Display

Attributes

Attributes

l

Data format

l

Memory ID

-

ID name

-

SET attribute

-

GET attribute

l

Foreign key

check

l

From ABAP

Dictionary

l

Conversion exit

l

Search help

l

Upper/lowercase

active

Dictionary

· You can temporarily change the object attributes marked in gray using the SCREEN system table.

· It may not be possible to activate all possible combinations of attributes. This depends on the format of the input/output field. For example, you cannot activate the Leading zeros attribute for a field with the data format CHAR, since it is only relevant for numeric fields.

· For further information about the Data format attribute, refer to the online documentation (reference INP-2).

[image: image7.wmf]ã

SAP

AG 2002

Creating Input/Output Fields

ABAP Dictionary

ABAP Dictionary

CARRID

Field name

Structure:

SDYN_CONN

Type

Length

CONNID

. . .

Screen Painter

Layout Editor

Name

Def. length

Data format

Element Attributes

CHAR

NUMC

4

HUGO

8

CHAR

ABAP

ABAP

*

INCLUDE xxxTOP *

TABLES

:

sdyn_conn.

DATA

:

hugo(8) TYPE c.

. . .

3

· You can create input/output fields in two ways:

· By entering them directly in the layout editor. You determine the size of the field by the number of underscore characters in the object text attribute. For numeric values, you can specify a comma as a separator, and a period as a decimal point. As the last character in the input/output field, you can enter V as a placeholder for a plus or minus sign.

· By using a template from the ABAP Dictionary. To do this, choose Dict/Program fields.
· If you want to use the contents of an input/output field in your ABAP program, you must declare the field globally using the DATA or TABLES statement.

[image: image8.wmf]ã

SAP

AG 2002

Transaction 1

Transaction 2

.

.

.

CAR LH

CON 0400

.

.

.

SAP memory

Set parameter

Get parameter

1

1

2

2

2

2

1

1

Airline

Flight

LH

0400

Airline

LH

Default Values in SAP Memory

· You can save values in the SAP memory using a parameter ID. These are user and terminal-session specific, but available to all internal and external sessions.

· SET Parameter copies the corresponding field contents into the SAP System memory in the PAI processing block.

· GET Parameter copies the corresponding field contents from the SAP memory at the end of the PBO processing block (after data has been transferred from the program), if the screen field still has its initial value.

[image: image9.wmf]ã

SAP

AG 2002

List of general element attributes

SPA

GPA

PID

SDYN_CONN

-

CARRID

X

X

CAR

.

.

.

SDYN_CONN

-

CONNID

X

X

CON

.

.

.

List of general element attributes

SPA

GPA

PID

SDYN_CONN

-

CARRID

X

X

CAR

.

.

.

SDYN_CONN

-

CONNID

X

X

CON

.

.

.

Defining SET and GET Parameter Attributes

Data element

Data element

.

.

.

Parameter ID

Data element

Data element

.

.

.

Parameter ID

CAR

S_CARR_ID

Carrier ID

Screen

Painter

Screen

Screen

Painter

Painter

ABAP

ABAP

Dictionary

Dictionary

· You can link an input/output field to an area of the SAP memory in the ABAP Dictionary.

· When you use an input/output field that is defined in the ABAP Dictionary, its parameter ID is displayed in the Dictionary attribute Parameter ID in the Screen Painter.

· The SET Parameter and GET Parameter attributes (SPA and GPA in the table) allow you to enable the SET and GET parameter functions separately.

· You can define parameter IDs in table TPARA.

[image: image10.wmf]ã

SAP

AG 2002

DEC

INT4

DATS

...

Automatic Field Input Checks

Mandatory fields check

Field format check

Fixed values

Foreign key check

?

Domain: Fixed values

Field: Check table

Field: Check table

· After the screen is displayed but before the PAI modules are processed, the system automatically checks the values the user enters on the screen.

· The first check is to ensure that all required fields have been filled.

· The system can perform a foreign key check only if a screen field refers back to an ABAP Dictionary field for which a check table has been defined. The foreign key check attribute must also be set.

· The F4 help function is also active. The system displays the possible entries from which the user can choose.

[image: image11.wmf]ã

SAP

AG 2002

Field Input Checks with Error Dialog

Screen

Screen

Painter

Painter

ABAP

ABAP

Ready for input again

1

1

1

1

E

…Message

1

PROCESS AFTER INPUT.

FIELD

<Field name>

<Field name>

MODULE

check_input.

MODULE check_input INPUT.

.

.

.

MESSAGE E

...

.

ENDMODULE.

· If the automatic field input checks are insufficient for your requirements, you can program your own in the PAI event. To do this, use the FIELD statement with the MODULE addition. This means that the module you specify is processed only for the field specified in the FIELD statement.

· If an error or warning message occurs during the module, the system sends the screen again, but without processing the PBO module. The message is displayed; only the field to which the check was applied is ready for input.

· Note: The FIELD statement is responsible for making the field ready for input again. If you use a message in a module that is not called from within a FIELD statement, the system displays the message, but does not make the field ready for input again.

[image: image12.wmf]ã

SAP

AG 2002

Checking Groups of Fields

Ready for input again

1

E

…Message

1

1

1

1

1

1

1

1

1

1

1

1

MODULE check_input INPUT.

.

.

.

MESSAGE E

...

...

.

ENDMODULE.

Screen

Screen

Painter

Painter

ABAP

ABAP

PROCESS AFTER INPUT.

CHAIN.

FIELD:

<Field name 1>

<Field name 1>

,

<Field name 2>

<Field name 2>

,

.

.

.

<Field name n>.

<Field name n>.

MODULE

check_input.

ENDCHAIN.

· If you want to ensure that more than one field is ready for input following an error dialog, you must list all of the relevant fields in the FIELD statement, and include both that and the MODULE statement in a CHAIN … ENDCHAIN block.

· You can include individual fields in more than one CHAIN … ENDCHAIN block.

· Note that the FIELD statement does not only make the field ready for input again. It also means that field contents changed during the current PAI processing are visible only if the field in question was also included in the FIELD statement of the current CHAIN block.

[image: image13.wmf]ã

SAP

AG 2002

Controlling Error Dialogs

ABAP

ABAP

MODULE check_CB INPUT.

.

.

.

MESSAGE E

...

.

ENDMODULE.

Ready for input again

Resume here if C changed

1

1

Screen

Screen

Painter

Painter

E

…Message

3

A

B

C

D

1

1

2

Resume here if B changed

3

PROCESS AFTER INPUT.

FIELD A MODULE check_A.

FIELD

B

MODULE check_B.

CHAIN.

FIELD:

C

,D.

MODULE check_CD.

ENDCHAIN.

CHAIN.

FIELD:

C,B.

MODULE check_CB.

ENDCHAIN.

2

· If the system sends an error or warning message, the current screen is sent again but the PBO is not processed again.

· Only the fields to which the module is assigned are ready for input again.

· After the user has entered new values, the PROCESS AFTER INPUT module is not completely reprocessed, but restarted somewhere within the processing block.

· The system finds out which field the user changed and resumes processing at the first corresponding FIELD statement.

· If the user merely confirms a warning message (without changing the field’s contents), the system restarts the PAI processing after the MESSAGE statement where the error was triggered.

[image: image14.wmf]ã

SAP AG 2002

Dialog Message Categories

E message

New entries required

W message

I message

Program

call

Screen 100

A message

X message

Restart

Termination

Error

Warning

Information

Success

New entries possible

Screen 100

Screen 100

Screen 100

Screen 200

S message

Screen 100

Screen 200

Screen 100

· Messages are divided into six categories: A, X, E, W, I, and S. The differences between each class are as follows:

A
Termination
The processing terminates and the user must restart the transaction.

X
Exit

Like message type A, but with short dump MESSAGE_TYPE_X.

E
Error

Processing is interrupted, and the user must correct the entry

W Warning

 Processing is interrupted and the user can correct the entries (works like
 an E message). However, it is also possible to confirm the existing entries
 by selecting Enter (works like an I message).

I
Information
Processing is interrupted, but continues when the user has confirmed the message (by selecting Enter).

S
Success

Information is displayed on the next screen.

[image: image15.wmf]ã

SAP

AG 2002

The FIELD Statement and Data Transport

ENTER

ENTER

Data transport for all

Data transport for all

fields except

fields except

A

A

and

and

B

B

from the screen into the

from the screen into the

ABAP program

ABAP program

Data transport for A

Data transport for A

Data transport for B

Data transport for B

S

S

t

t

e

e

p

p

S

S

e

e

q

q

u

u

e

e

n

n

c

c

e

e

Screen

Screen

Painter

Painter

PROCESS AFTER INPUT.

MODULE

first

.

FIELD

A

MODULE

check_A

.

FIELD

B

MODULE

check_B

.

MODULE

last

.

Execute module first

Execute module first

Execute modul

Execute modul

e

e

check_A

check_A

Execute modul

Execute modul

e

e

check_B

check_B

Execute module last

Execute module last

ABAP

Screen

· The system transports data from screen fields into the ABAP fields with the same name in the PAI processing block. First, it transports all fields that are not contained in any FIELD statements. The remaining fields are transported when the system processed the relevant FIELD statement.

· If an error or warning message occurs in a module belonging to a FIELD statement, the current values of all fields in the same CHAIN structure are automatically transported back into their corresponding screen fields.

[image: image16.wmf]ã

SAP

AG 2002

Conditional Module Calls

l

How can I avoid unnecessary field checks?

l

How can I leave the screen without any automatic field

checks?

l

How can I avoid data loss when the user navigates?

?

· Field input checks usually require access to the database. Avoiding them where possible improves the performance of your program.

· If the user has strayed onto the screen by mistake, he or she are not usually able to make a consistent set of entries that will satisfy the input checks. You should therefore make it possible for a user to leave a screen without the field checks taking place.

· To protect the user from losing data that he or she has already entered if they leave the screen unintentionally, program security prompts.

[image: image17.wmf]ã

SAP

AG 2002

Execution on Input

PROCESS AFTER INPUT.

FIELD

<Field name>

MODULE

<module>

ON INPUT

.

.

.

.

.

Screen

Screen

Painter

Painter

PROCESS AFTER INPUT.

CHAIN.

FIELD

: <Field name 1>,

<Field name 2>,

.

.

.

<Field name n>.

MODULE

<module>

ON CHAIN

-

INPUT

.

.

ENDCHAIN.

ENDCHAIN.

.

.

.

Screen

Screen

Painter

Painter

Called when

Called when

field contents

field contents

are not equal

are not equal

to initial value

to initial value

· If you use the ON INPUT addition in a MODULE statement after FIELD, the module is called only if the field contents have changed from their initial value.

· Within a CHAIN block, you must use the ON CHAIN-INPUT addition. The module is then called if the contents of at least one screen field within the CHAIN block have changed from their initial value.

· You may use the ON INPUT addition only if the MODULE statement is contained in a FIELD statement.

[image: image18.wmf]ã

SAP

AG 2002

Execution on Change

PROCESS AFTER INPUT.

FIELD <Field name>

MODULE <module>

ON REQUEST.

.

.

.

Screen

Screen

Painter

Painter

PROCESS AFTER INPUT.

CHAIN.

FIELD: <Field name 1>,

<Field name 2>,

.

.

.

<Field name n>.

MODULE <module>

ON CHAIN

-

REQUEST.

ENDCHAIN.

.

.

.

Screen

Screen

Painter

Painter

Execution when

Execution when

input is new

input is new

· If you use the ON REQUEST addition in a MODULE statement after FIELD, the module is called only if the user enters a new value in that field.

· Within a CHAIN block, you must use the ON CHAIN-REQUEST addition. The module is then called if the user changes the contents of at least one screen field within the CHAIN block.

· You may use the ON REQUEST addition only if the MODULE statement is contained in a FIELD statement.

[image: image19.wmf]ã

SAP

AG 2002

Avoiding Field Input Checks

PROCESS AFTER INPUT.

MODULE exit

AT EXIT

-

COMMAND.

.

.

.

Screen

Screen

Painter

Painter

MODULE exit INPUT.

CASE ok_code.

WHEN 'CANCEL'.

CLEAR ok_code.

LEAVE TO SCREEN 0.

WHEN 'EXIT'.

LEAVE PROGRAM.

ENDCASE.

ENDMODULE.

" EXIT INPUT

ABAP

ABAP

Execution when

Execution when

function has

function has

type E

type E

· The module with the AT EXIT-COMMAND addition is processed before the automatic field input checks. You can use it for navigation. You may use the AT EXIT-COMMAND addition with only one module for each screen. It may not have an associated FIELD statement.

· If you do not leave the screen from this module, the automatic field checks are processed after it, followed by the rest of the PAI event.

[image: image20.wmf]ã

SAP

AG 2002

Navigation: Targets

Maintenance

screen 1

Maintenance

screen 2

Details

Calling

program

Initial

screen

· The Back and Cancel functions should lead one logical level backward. From screens on the same level as the initial screen, they lead back to the initial screen. From screens that contain detailed information, they lead back to the screen that called the current screen.

· The Cancel function differs from Back in its dialog behavior.

· The Exit function should return to where the processing unit was called.

· On the initial screen of a program, all three functions -(Back, Exit, and Cancel) lead back to the screen from which the current program was called.

· For further information, see the online documentation, INP-3.

[image: image21.wmf]ã

SAP

AG 2002

Navigation: Single

-

Screen Transaction

•

Initialize fields

•

Allow new fields

Calling

program

· Back exits the current transaction and returns to the calling program (for example, the Workplace). The function works like Exit.

· Exit exits the current transaction and returns to the calling program (for example, the Workplace).

· The Exit and Back functions are different in terms of their dialog behavior to prevent losing input data.

· Cancel displays the screen again with initialized data fields and allows the user to select a new object.

[image: image22.wmf]ã

SAP

AG 2002

Function module

for dialog

Navigation: Dialogs

Back

Change Session

Exit

Cancel

Yes

Yes

No

Saves dialog

Yes

Yes

No

Checks entries

Check,

then s

ave

dialog

First

save dialog,

then check

-

Sequence

Save data?

Save data?

Unsaved data will

be lost;

cancel?

Example

popup_to_

confirm_step

popup_to_

confirm_step

popup_to_

confirm_

loss_of_data

' '

'E'

'E'

Function type

· If the user has entered data on the screen (sy-datar = X or your own flag), you can avoid accidental loss of data by using a predefined security prompt.

· For the Exit and Cancel functions, you first send a dialog box to the user. Then (in the case of the Exit function), the system checks the input on the screen. The functions in question must be function type E.

· In the case of the Back function, the input checks come before the dialog.

· Note that unsaved data may also be lost, for example, when switching from Change to Display mode. If the user chooses not to save, the system will display the original data stored in the database.

· The R/3 System contains a series of function modules that you can use for the user dialogs. Flow logic diagrams for the implementation of the individual functions are included in the appendix.

· For further information, see the online documentation, INP-4.

[image: image23.wmf]ã

SAP AG 1999

Input/output fields

Input/output fields

Checkboxes and radio button groups

Checkboxes and radio button groups

Pushbuttons

Pushbuttons

Input help

Input help

Input/Output Elements: Input Help

[image: image24.wmf]ã

SAP AG 2002

Input Help

Lufthansa

09.09.2002

Airline

Flight date

Lauda Air

Delta Airlines

F4

Airline: LH

Flight number: 0400

Flight date

09.09.2002

10.10.2002

11.29.2002

12.02.2002

12.19.2002

12.21.2002

· You can help the user with input by using dropdown list boxes containing the possible entries.

· Input help (F4 help) is a standard function in the R/3 System. It allows the user to display a list of possible entries for a screen field. If the field is ready for input, the user can place a value in it by selecting it from the list.

· If a field has input help, the possible entries button appears on its right. The button is visible whenever the cursor is placed in the field. You can start the help either by clicking the button or by pressing the F4 key.

· In addition to the possible entries, the input help displays relevant additional information about the entries. This is especially useful when the field requires a formal key.

· Since the input help is a standard function, it should have the same appearance and behavior throughout the system. Utilities in the ABAP Workbench allow you to assign standardized input help to a screen field.

· The precise description of the input help of a field usually arises from its semantics. Consequently, input help is usually defined in the ABAP Dictionary.

[image: image25.wmf]ã

SAP

AG 2002

Dropdown Boxes

Screen Painter

Layout Editor

Name

Dropdown

General Attributes

Text

SDYN_CONN

-

CARRID

List box

Program Attributes

Value list

ABAP Dictionary

ABAP Dictionary

CARRID

Field name

Structure:

SDYN_CONN

Input help

. . .

...

using check table

SCARR

CarrID

Carrname

· Dropdown boxes allow the user to choose an entry from a pull-down list containing the possible entries. The user cannot enter values freely, but must choose a value from the list.

· To create a dropdown box for an input field, you must do the following in the Screen Painter:

· Set the Dropdown attribute to List box.

· Change the Visible Length attribute to the displayed length of the descriptive text.

· Set the Value list attribute to ' ' to use value help from the ABAP Dictionary.

· If required, set the function code for the selection. Like a menu entry, this function code triggers the PAI; you can interpret the function code using the OK_CODE field.

· Important: The visible length of the field determines the width of the field (including the button) and the selection list. You must change the width of the field when you convert the field to a dropdown box.

· The values are filled automatically using the search help assigned to the ABAP Dictionary field. The ABAP Dictionary field must have a search help (check table) with two columns or a table of fixed values.

[image: image26.wmf]ã

SAP AG 2001

Input/Output Elements: Checkboxes and Radio

Button Groups

Input/output fields

Input/output fields

Checkboxes and radio button groups

Checkboxes and radio button groups

Pushbuttons

Pushbuttons

Input help

Input help

[image: image27.wmf]ã

SAP

AG 2002

n

Simple display of all

possible options

User chooses

functions using

the mouse

Option B

Option C

Option 1

Option 2

Option 3

Radio button group

Checkbox

Checkboxes and Radio Button Groups

!

Option A

· Use radio buttons when you want to allow a user to choose only a single element from a group of fields.

· Use checkboxes when you want to allow the user to choose one or more elements from a group of fields.

· With radio buttons, one selection rules out all other options within the group. When the user selects one, all of the others are automatically deselected.

[image: image28.wmf]ã

SAP

AG 2002

Radio Buttons and Checkboxes: Attributes

General

l

Name

l

Text

l

Icon display

-

Icon name

-

Quickinfo

l

Start position

l

Size

-

Static

-

Dynamic

l

Scrollable

l

Modif. groups

l

Function code

l

Function type

Program

l

Dialog behavior

-

Input

-

Output

l

Invisible

Display

Attributes

Attributes

l

Data format

l

Memory ID

-

ID name

-

SET attribute

-

GET attribute

l

From ABAP

Dictionary

Dictionary

· You must attach a name to checkboxes and radio buttons.

· In addition to the input/output field, you can display text and icons for them. The text is contained in the Text field in the attributes. To display an icon, enter its name in the Icon name attribute. A quick info for the icon then appears in the appropriate field.

· You can change the Input field and Invisible attributes dynamically using the SCREEN system table.

[image: image29.wmf]ã

SAP

AG 2002

Creating a Checkbox

* INCLUDE xxxTOP *

DATA: check1(1) TYPE c.

. . .

ABAP

ABAP

Screen Painter

Screen Painter

Layout Editor

Option 1

Option 2

Option 3

Name

Data format

check1

CHAR

Element Attributes

Text

Option 1

X

· You create checkboxes in the fullscreen editor of the Screen Painter. To do this, choose the checkbox object from the object list and place it on the screen. You must assign a name to each checkbox. In the ABAP program, create a field with the same name, type C, and length one.

· You can find out whether a user has chosen a checkbox in the ABAP program by querying the field contents. If a checkbox is not selected, its field value is initial.

· You can assign a function code and function type to a checkbox. When the user selects it, the PAI event is triggered and the function code is placed in the command field (that is, the OK_CODE field).

[image: image30.wmf]ã

SAP

AG 2002

Creating a Radio Button Group

Screen Painter

Screen Painter

Layout Editor

* INCLUDE xxxTOP *

DATA: BEGIN OF mode,

display VALUE `X

´,

change,

create,

END OF mode.

Display

Change

Create

1

2

1

2

Create radio button

Define radio button group

Name

Data format

MODE

-

DISPLAY

CHAR

Element Attributes

Text

Display

ABAP

ABAP

· You create checkboxes in the layout editor of the Screen Painter. There are two steps involved:

· Create the radio buttons as individual elements. Choose radio button from the object list and place it on the screen. You must assign a name to each radio button. In the ABAP program, create a field with the same name, type C, and length one. To make your programs easier to read and maintain, create a structure associated with each radio button group.

· You can also combine a collection of radio buttons into a radio button group. To do this, select the radio buttons in the layout editor and then choose Edit (Group (Radio button group (Define.

· You can find out which radio button a user has chosen by querying the field contents in the ABAP program. If a radio button is not selected, the field value is initial.

· You can assign a function code and function type to a radio button group. When the user selects one of the radio buttons, the PAI event is triggered and the function code is placed in the command field (that is, the OK_CODE field).

[image: image31.wmf]ã

SAP

AG 2002

Program Flow for Radio Buttons and Checkboxes

Screen Painter

Screen Painter

Element List

Name

check1

check2

check3

mode

-

display

mode

-

change

mode

-

create

ok_code

ok_code

Type

OK

FctCode

CHK1

TOGGLE

TOGGLE

TOGGLE

DATA ok_code TYPE sy

-

ucomm.

CONSTANTS marked VALUE 'X'.

...

MODULE user_command_100 INPUT.

CASE ok_code.

WHEN 'CHK1'.

IF NOT check1 IS INITIAL.

. . .

ENDIF.

WHEN 'TOGGLE'.

CASE marked.

WHEN mode

-

display.

...

WHEN mode

-

change.

...

WHEN mode

-

create.

...

ENDCASE.

ENDCASE.

ENDMODULE.

DATA ok_code TYPE sy

-

ucomm.

CONSTANTS marked VALUE 'X'.

...

MODULE user_command_100 INPUT.

CASE ok_code.

WHEN 'CHK1'.

IF NOT check1 IS INITIAL.

. . .

ENDIF.

WHEN 'TOGGLE'.

CASE marked.

WHEN mode

-

display.

...

WHEN mode

-

change.

...

WHEN mode

-

create.

...

ENDCASE.

ENDCASE.

ENDMODULE.

PROCESS AFTER INPUT.

...

MODULE user_command_100.

. . .

PROCESS AFTER INPUT.

...

MODULE user_command_100.

. . .

Screen

Screen

Painter

Painter

ABAP

ABAP

· Depending on whether or not you have assigned a function code to a checkbox or radio button, when you select the field the system either triggers or does not trigger a PAI event.

· You can assign a function code to a radio button after you have defined a radio button group. The system then assigns the same function code to all radio buttons of the group.

[image: image32.wmf]ã

SAP AG 1999

Input/Output Elements: Pushbuttons

Input/output fields

Input/output fields

Checkboxes and radio button groups

Checkboxes and radio button groups

Pushbuttons

Pushbuttons

Input help

Input help

[image: image33.wmf]ã

SAP

AG 2002

Pushbuttons

l

User

-

determined program

flow

l

Functions that relate to

individual screen elements

or groups of screen elements

User input using

the mouse

Display/change

Display/change

A

B

A

B

· Pushbuttons are input fields for the command field (that is, the OK_CODE field).

· Using the mouse, users can quickly access functions that relate to individual screen elements or groups of screen elements.

· Use pushbuttons in the data area of your screen to show or hide further information.

· If a pushbutton relates to a single field or a small group of fields, make sure that the pushbutton is as close to them as possible. If the function relates to a group, make this clear using a group box.

· If pushbuttons relate to a table displayed on the screen, place them underneath it in a horizontal row, close together, with a blank line between them and the table.

· When the user chooses a pushbutton, the system tells the program which function is chosen. At this point, control of the program passes back to a work process on the application server, which processes the PAI processing block.

[image: image34.wmf]ã

SAP

AG 2002

Pushbuttons: Attributes

General

Program

l

Name

l

Text

l

Icon display

-

Icon name

-

Quickinfo

l

Start position

l

Size

-

Static

-

Dynamic

l

Modif. groups

l

Function code

-

F code

-

F type

l

From ABAP

Dictionary

l

Dialog behavior

-

Output

Dictionary

l

Invisible

Display

Attributes

Attributes

· Pushbuttons may contain text (Text attribute), an icon, or both. You can either specify an icon statically or dynamically, using the function module ICON_CREATE.

· You can change the visible length, output field, and invisible attributes dynamically using the system table SCREEN.

· You can change the text on a pushbutton dynamically. To do this, set the Output field attribute in the Screen Painter to active, and create a global field with the same name in your ABAP program. Because the Screen Painter field and the program field have the same name, any changes to the field contents will be immediately visible on the screen (similarly to input/output fields).

[image: image35.wmf]ã

SAP

AG 2002

Creating and Processing Pushbuttons

Screen Painter

Screen Painter

Element List

Name

button

ok_code

ok_code

Type

OK

FctCode

SRTU

FctType

2

Name

Text

FctCode

button

Sort

SRTU

Element Attributes

FctType

Layout Editor

1

1

2

DATA:ok_code TYPE sy

-

ucomm.

...

MODULE user_command_100 INPUT.

CASE ok_code.

WHEN 'SRTU'.

SORT it_book by ...

.

. . .

ENDCASE.

ENDMODULE.

DATA:ok_code TYPE sy

-

ucomm.

...

MODULE user_command_100 INPUT.

CASE ok_code.

WHEN 'SRTU'.

SORT it_book by ...

.

. . .

ENDCASE.

ENDMODULE.

PROCESS AFTER INPUT.

...

MODULE user_command_100.

. . .

PROCESS AFTER INPUT.

...

MODULE user_command_100.

. . .

Screen

Screen

Painter

Painter

Sort

ABAP

ABAP

· When you create a pushbutton, you must:

· Create a pushbutton: Choose the pushbutton object from the Screen Painter element list, place it on the screen, and assign a name to it. You can enter a static text in the Text attribute. Enter a function code for the pushbutton in the Function code attribute. This is placed in the OK_CODE field automatically when the user chooses the pushbutton on the screen.

· Activate the command field (OK_CODE field): You must give the field a name in the element list of the Screen Painter, then declare an identically-named field in the ABAP program with reference to the system field sy-ucomm.

· When the user chooses a function on the screen, the system places the corresponding function code into the OK_CODE field. You can then query the field and use the result to trigger the appropriate coded processing block.

· If the user chooses a pushbutton that has the function type ' ' (space), the PAI event is processed.

· If the user chooses a pushbutton that has the function type E, the system processes a module with the AT EXIT-COMMAND addition. This happens before the automatic field transport and the field input checks. The system places the function code that has been triggered into the OK_CODE field, which you can then query in the module.

· After the AT EXIT-COMMAND module, the system continues processing the screen normally (field input checks, followed by PAI processing).

[image: image36.wmf]ã

SAP

AG 2002

l

Use input/output fields, checkboxes, radio button

groups, and pushbuttons in your programs.

You are now able to:

Input/Output Elements: Unit Summary

Screen Elements for Input/Output Exercises

	[image: image37.png]

	Unit: Screen Elements for Input/Output

Topic: Input/output fields on screens, input checks, input help, and mode selection using a radio button group

	[image: image38.png]

	At the conclusion of these exercises, you will be able to:

· Create input/output fields for screens.

· Make input checks.

· Use input helps in your programs.

· Create radio button groups and program the relevant logic.

· Make dynamic changes to screens.

	[image: image39.wmf]

	· Add input/output fields to your maintenance transaction for flight information. The airline, flight number, and flight date fields should be ready for input.

· Support the user by checking the entries and providing input help.

· Allow the user to switch between different program modes:

· Display mode

· Flight data maintenance mode (the user can change the aircraft type)

· Maintain bookings (you will use this later)

· If the user changes the aircraft type, he or she should be able to save the changed value.

1-1
Put the input/output fields on the screen.

1-1-1
Extend your program SAPMZ##BC410_SOLUTION from the previous exercise (or copy the model solution SAPMBC410ADIAS_GUI).

You can use the model solutions SAPMBC410AINPS_INPUT_FIELD.
1-1-2
Use the ABAP Dictionary structure SDYN_CONN in the TABLES statement (in the TOP include) to create a structure with the same name for transporting data.

1-1-3
Create the following fields on the screen. Use the facility for using fields from the ABAP Dictionary.

	Screen 100
	I/O Fields, Text fields:
SDYN_CONN
 -CARRID
 -CONNID
 -FLDATE
	Attributes for fields:
Input: ON
Output: ON
Required entry: ON
SET parameter: ON
GET parameter: ON

	
	I/O Fields, Text Fields:
SDYN_CONN
 -PRICE
 -CURRENCY
 -PLANETYPE
 -SEATSMAX
 -SEATSOCC
 -PAYMENTSUM
	Attributes for each field:
Input: OFF
Output: ON

1-1-4
In the PAI event of screen 100, call a module read_sflight. Create the module using forward navigation. Try to read the corresponding data record from table sflight, and analyze the return code sy-subrc. If the data record does not exist, display message 038 from class BC410 as an information message and refresh the output fields.

1-2
Execute the input checks and extend the navigation functions on the screen to include the Exit function.

1-2-1
Extend your program SAPMZ##BC410_SOLUTION from the previous exercise or copy the corresponding model solution SAPMBC410AINPS_INPUT_FIELD. You can use the model solution SAPMBC410AINPS_CHECK_INPUT for orientation.
1-2-2
Change the information message in 5-1-4 to an error message. Read the database table only if the user changes one or more entries on the screen. Make sure that the fields are ready for input again if the data record does not exist.

1-2-3
Assign the function codes EXIT and CANCEL to the standard keys SHIFT-F3 (Exit) and F12 (Cancel). Ensure that these functions are processed before the automatic input checks. If the user chooses Exit, leave the program. If the user chooses Cancel, initialize the input/output fields and display the screen again.

1-3
Make the user’s task easier by providing input help.

1-3-1
Extend your program SAPMZ##BC410_SOLUTION from the previous exercise or copy the corresponding model solution SAPMBC410AINPS_CHECK_INPUT. You can use the model solution SAPMBC410AINPS_HELP_FOR_INPUT for orientation.
1-3-2
On screen 100, set the Dropdown attribute to List box for the input/output field sdyn_conn-carrid. Make sure that the program attribute Value list is set to ' ' (from ABAP Dictionary).

1-4
Create a radio button group to allow the user to choose one of a range of program modes.

1-4-1
Extend your program SAPMZ##BC410_SOLUTION from the previous exercise (or copy the model solution SAPMBC410AINPS_HELP_FOR_INPUT). Use the model solution SAPMBC410AINPS_RADIOBUTTON for orientation.

1-4-2
On screen 100, create a radio button group with the buttons view, maintain_flights, and maintain_bookings. Make sure that the function code MODE (with type ' ') is triggered when the user chooses a different mode. Create a group box around the radio button group called frame and assign it the text Mode. Declare the relevant data fields in your top include.

1-4-3
Program the Maintain flight data mode. In this mode, the input/output field sdyn_conn-planetype should be ready for input and required. Create a module modify_screen to make the corresponding dynamic screen modification when the field is populated with data.

If the user enters a new aircraft type only, check whether the number of seats booked is greater than the maximum number of seats. To do this, update the field sdyn_conn-seatsmax from table SAPLANE in a new PAI module. If an error occurs, display message 109 from class BC410 as an error message and transport the maximum number of seats back to the screen.

1-4-4
Create a new PAI module trans_from_dynp to populate a new Global variable wa_sflight of ABAP Dictionary type SFLIGHT with the corresponding fields from sdyn_conn. The new work area will be used next to update the SFLIGHT table with the new aircraft type and the new maximum number of seats.

Assign the function code SAVE (function type ' ') to the standard key Ctrl-S (Save). If the user chooses this function, save the new data record in the database. In subroutine update_sflight, use a direct database update in the form:

 UPDATE sflight FROM wa_sflight.
 IF sy-subrc NE 0.
 MESSAGE a008.
 ENDIF.
 MESSAGE s009.

(This process would normally use a suitable SAP lock, but we have omitted it here for simplicity.)

Screen Elements for Input/Output Solutions

	[image: image40.png]

	Unit: Screen Elements for Input/Output

Topic: Input/output fields on screens, input checks, input help, and mode selection using a radio button group

5-1
Model solution SAPBC410AINPS_INPUT_FIELD
Add the coding in bold type to your program. Create the new subroutines using forward navigation.

Flow logic screen 100

PROCESS BEFORE OUTPUT.

 MODULE status_0100.

 MODULE clear_ok_code.

*

PROCESS AFTER INPUT.

 MODULE read_sflight.

 MODULE user_command_0100.

Top include

PROGRAM sapmbc410ainps_input_field MESSAGE-ID bc410.

TABLES sdyn_conn.

DATA ok_code TYPE sy-ucomm.

PBO module include

MODULE status_0100 OUTPUT.

 SET PF-STATUS 'STATUS_100'.

 SET TITLEBAR 'TITLE_100'.

ENDMODULE. " STATUS_0100 OUTPUT

MODULE clear_ok_code OUTPUT.

 CLEAR ok_code.

ENDMODULE. " clear_ok_code OUTPUT

PAI module include

MODULE user_command_0100 INPUT.

 CASE ok_code.

 WHEN 'BACK'.

 LEAVE TO SCREEN 0.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

MODULE read_sflight INPUT.

 SELECT SINGLE * FROM sflight INTO CORRESPONDING FIELDS OF sdyn_conn

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.

 IF sy-subrc NE 0.

 CLEAR: sdyn_conn.

 MESSAGE i038.

 ENDIF.

ENDMODULE. " read_sflight INPUT

5-2
Model solution SAPMBC410AINPS_CHECK_INPUT
Add the coding in bold type to your program. Create the new modules using forward navigation.

Top include

No changes are necessary.

Flow logic screen 100

PROCESS BEFORE OUTPUT.

 MODULE status_0100.

 MODULE clear_ok_code.

*

PROCESS AFTER INPUT.

 MODULE exit AT EXIT-COMMAND.

 CHAIN.

 FIELD: sdyn_conn-carrid,

 sdyn_conn-connid,

 sdyn_conn-fldate MODULE read_sflight ON CHAIN-REQUEST.

 ENDCHAIN.
 MODULE user_command_0100.

PBO module include

No changes are necessary.

PAI module include

MODULE user_command_0100 INPUT.

 CASE ok_code.

 WHEN 'BACK'.

 LEAVE TO SCREEN 0.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

MODULE exit INPUT.

 CASE ok_code.

 WHEN 'EXIT'.

 LEAVE PROGRAM.

 WHEN 'CANCEL'.

 CLEAR: sdyn_conn.

 SET PARAMETER ID: 'CAR' FIELD space,

 'CON' FIELD space,

 'DAY' FIELD space.
 LEAVE TO SCREEN 100.

 ENDCASE.

ENDMODULE. " exit INPUT

MODULE read_sflight INPUT.
 SELECT SINGLE * FROM sflight INTO CORRESPONDING FIELDS OF sdyn_conn

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.

 IF sy-subrc NE 0.

 MESSAGE e038.

 ENDIF.

ENDMODULE. " check_sflight INPUT
5-4
Model solution SAPMBC410AINPS_RADIOBUTTON
Add the coding in bold type to your program. Create the new modules using forward navigation.

Main Program

INCLUDE mbc410ainps_radiobuttontop.

INCLUDE mbc410ainps_radiobuttono01.

INCLUDE mbc410ainps_radiobuttoni01.

INCLUDE mbc410ainps_radiobuttonf01.
Top include

PROGRAM sapmbc410ainps_radiobutton MESSAGE-ID bc410 .

TABLES sdyn_conn.

DATA: BEGIN OF mode,

 view VALUE 'X', "selected

 maintain_flights,

 maintain_bookings,

 END OF mode.

DATA ok_code TYPE sy-ucomm.

DATA wa_sflight TYPE sflight.

Subroutine include

Insert the following subroutine in the include:

FORM update_sflight.

 UPDATE sflight FROM wa_sflight.

 IF sy-subrc NE 0.

 MESSAGE a008.

 ENDIF.

 MESSAGE s009.

ENDFORM. " update_sflight
Flow logic screen 100

PROCESS BEFORE OUTPUT.

 MODULE status_0100.

 MODULE modify_screen.

 MODULE clear_ok_code.

*

PROCESS AFTER INPUT.

 MODULE exit AT EXIT-COMMAND.

 CHAIN.

 FIELD: sdyn_conn-carrid,

 sdyn_conn-connid,

 sdyn_conn-fldate MODULE check_sflight ON CHAIN-REQUEST.

 ENDCHAIN.

 CHAIN.

 FIELD: sdyn_conn-planetype,

 sdyn_conn-seatsmax MODULE check_planetype ON CHAIN-REQUEST.

 ENDCHAIN.

 MODULE trans_from_dynp.

 MODULE user_command_0100.

PBO module include

MODULE status_0100 OUTPUT.

 SET PF-STATUS 'STATUS_100'.

 SET TITLEBAR 'TITLE_100'.

ENDMODULE. " STATUS_0100 OUTPUT
MODULE clear_ok_code OUTPUT.

 CLEAR ok_code.

ENDMODULE. " clear_ok_code OUTPUT
MODULE modify_screen OUTPUT.

 CHECK NOT mode-maintain_flights IS INITIAL.

 CHECK NOT sdyn_conn-planetype IS INITIAL.

 LOOP AT SCREEN.

 IF screen-name = 'SDYN_CONN-PLANETYPE'.

 screen-input = 1.

 screen-required = 1.

 MODIFY SCREEN.

 ENDIF.

 ENDLOOP.

ENDMODULE.
PAI module include

MODULE user_command_0100 INPUT.

 CASE ok_code.

 WHEN 'SAVE'.

 PERFORM update_sflight.

 WHEN 'BACK'.

 LEAVE TO SCREEN 0.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT
MODULE trans_from_dynp INPUT.

 MOVE-CORRESPONDING sdyn_conn TO wa_sflight.

ENDMODULE. " trans_from_dynp INPUT
MODULE exit INPUT.

 CASE ok_code.

 WHEN 'EXIT'.

 LEAVE PROGRAM.

 WHEN 'CANCEL'.

 CLEAR: sdyn_conn.

 SET PARAMETER ID: 'CAR' FIELD space,

 'CON' FIELD space,

 'DAY' FIELD space.
 LEAVE TO SCREEN 100.

 ENDCASE.

ENDMODULE. " exit INPUT
MODULE check_planetype INPUT.

 SELECT SINGLE seatsmax INTO sdyn_conn-seatsmax FROM saplane

 WHERE planetype = sdyn_conn-planetype.

 CHECK sdyn_conn-seatsmax < sdyn_conn-seatsocc.

 MESSAGE e109.

ENDMODULE. " check_planetype INPUT

MODULE read_sflight INPUT.

 SELECT SINGLE * INTO CORRESPONDING FIELDS OF sdyn_conn FROM sflight

 WHERE carrid = sdyn_conn-carrid

 AND connid = sdyn_conn-connid

 AND fldate = sdyn_conn-fldate.

 IF sy-subrc NE 0.

 MESSAGE e038.

 ENDIF.
ENDMODULE. " check_sflight INPUT
© SAP AG
TAW12
6-46

