
0 [image: image1.wmf]ã

SAP

AG 2002

Basic Techniques in Interactive Lists

Contents:

l

Detail lists

l

Interactive events

l

Data transport between list and program

n

Hide technique

n

Valid line selection

n

Querying cursor position

l

Page headings for detail lists

l

List in modal dialog boxes

[image: image2.wmf]ã

SAP

AG 2002

At the conclusion of this unit, you will be able to:

Basic Techniques in Interactive Lists: Objectives

l

Describe what detail lists are and how to generate

them.

l

Identify which interactive events exist.

l

Transport data between lists and programs.

l

Recognize an

invaild

line selection.

l

Create page headers in detail lists.

l

Create lists in modal dialog boxes.

[image: image3.wmf]ã

SAP

AG 2002

Basic Techniques in Interactive Lists

Detail lists

Detail lists

Data transport

Data transport

Other techniques

Other techniques

[image: image4.wmf]ã

SAP

AG 2002

Basic list

DL 1

DL 2

DL 20

Navigating Between Lists

double

-

click on line

· Up to 20 parallel detail lists can exist for each basic list. Each list has in its own individual memory area called a list buffer.

· The same functions are available in detail lists as are available in basic lists.

· Choose Back (the green arrow) or Cancel (the red X) to leave the current list. This releases the corresponding list buffer and returns to the preceding list.

· Use the Exit function (yellow arrow) to return to the selection screen.

[image: image5.wmf]ã

SAP

AG 2002

* Basic list

START

-

OF

-

SELECTION.

GET ...

.

END

-

OF

-

SELECTION.

TOP

-

OF

-

PAGE.

* Detail lists

AT LINE

-

SELECTION.

AT USER

-

COMMAND.

TOP

-

OF

-

PAGE DURING LINE

-

SELECTION

.

Events:

Overview

· The events START-OF-SELECTION, GET, END-OF-SELECTION, TOP-OF-PAGE and END-OF-PAGE can be used only to create basic lists. Once you leave a basic list, these events are no longer processed.

· Detail lists are created using two basic events: AT LINE-SELECTION and AT USER-COMMAND. The event TOP-OF-PAGE DURING LINE-SELECTION is used to create headers for all detail lists. If the application displays multiple detail lists, use the CASE keyword with system field sy-dynnr detemine which secondary headings to display.

[image: image6.wmf]ã

SAP

AG 2002

Program

Flow in Detail Lists

DEMO:

List ...

SY

-

UCOMM

F2

PICK

SY

-

UCOMM

%EX

PRI

P+

P

-

. . .

REPORT SAPBC405_...

AT LINE

-

SELECTION.

AT LINE

AT LINE

-

-

SELECTION.

SELECTION.

System programs

List

Edit

Goto

System

Help

· If the report has a custom GUI and the user selects a menu option, the event AT USER-COMMAND is triggered. The function code assigned to the menu option can be evaluated using a CASE construct to determine which menu option was selected.

· If the user double-clicks on a report line, the AT LINE-SELECTION event is triggered. The event can also be triggered by single clicking on a report line and either pressing the Detail icon in the application tool bar, pressing F2, or entering the word PICK in the OK code field and pressing Enter.

[image: image7.wmf]ã

SAP

AG 2002

REPORT sapbc405_

ilbd

_interact_list_1.

...

AT LINE

-

SELECTION.

WRITE:

‚This is a detail list'(001)

COLOR COL_TOTAL,

/ 'List level:

'(002),

sy

-

lsind

, ...

Creating Detail Lists I

Basic list

User action

sy

-

ucomm

= PICK

AT LINE

AT LINE

-

-

SELECTION.

SELECTION.

This is a detail list

List level:

1

· When the PICK function is triggered, the program is given control, and the interactive event AT LINE-SELECTION is processed. All the subsequent output (WRITE, ULINE, or SKIP) is output in a details list.

· The system field SY-LSIND indicates the current list level and is increased by one whenever event AT LINE-SELECTION or the AT USER-COMMAND event is processed.

[image: image8.wmf]ã

SAP

AG 2002

REPORT sapbc405_

ilbd

_interact_lists_2.

AT LINE

-

SELECTION.

CASE

sy

-

lsind

.

WHEN '1'.

WRITE:

'Detail list:

1'(001),

/'SY

-

LSIND:

'(000),

sy

-

lsind

.

WHEN '2'.

WRITE:

'Detail list:

2'(002),

/'SY

-

LSIND:

'(000),

sy

-

lsind

.

ENDCASE.

Detail list:

1

sy

-

lsind

:

1

Detail list:

2

sy

-

lsind

:

2

PICK

PICK

Basic list

sy

-

lsind

:

0

PICK

Creating Detail Lists II

AT LINE

AT LINE

-

-

SELECTION.

SELECTION.

sy

sy

-

-

lsind

lsind

.

.

WHEN 1.

WHEN 1.

WHEN 2.

WHEN 2.

· The system field SY-LSIND is incremented by one each time the AT USER-COMMAND or AT LINE-SELECTION events are triggered. You can determine the number of the new list buffer by using a CASE construct with the system field SY-LSIND.

· You control the maximum number of detail lists that will be displayed. In the above example, no third list is generated. If the AT LINE-SELECTION event is triggered while viewing list 2, the value of sy-lsind increments to three but since no WRITE, ULINE, or SKIP is executed, the system sets SY-LISIND back to two and detail list two remains visible.

[image: image9.wmf]ã

SAP

AG 2002

Basic Techniques in Interactive Lists

Detail lists

Detail lists

Data transport

Data transport

Other techniques

Other techniques

[image: image10.wmf]ã

SAP

AG 2002

HIDE:

<f1>, <f2>, ...

.

DEMO:

Data Transport:

Hide Technique

--

AA NEW YORK SAN FRANCISCO

AZ ROME FRANKFURT

AZ TOKYO ROME

LH FRANKFURT NEW YORK

REPORT sapbc405_

ilbd

_hide .

GET

spfli

FIELDS

carrid connid

cityfrom cityto

.

WRITE:

/

spfli

-

carrid

,

10

spfli

-

cityfrom

,

(24)

spfli

-

cityto

.

HIDE:

spfli

-

carrid

,

spfli

-

connid

.

AT LINE

-

SELECTION.

...

HIDE Area

WRITE:

WRITE:

HIDE:

HIDE:

3

3

:

6

6

:

spfli

-

carrid

spfli

-

connid

:

spfli

-

carrid

spfli

-

connid

:

AA

0017

:

LH

0400

:

HIDE area of list level 0

Line

Field name

Value

· If you want to show supporting data for a selected line, you will need to know which line was selected. The HIDE keyword is used to store data objects and their values so they can be made available when the User selects a report line. When a line is selected, the fields that were hidden are filled with the values that you hid for that line. You can hide fields you do not write and write fields you do not hide.

· You typically use the HIDE statement to save the key fields or other information that you are required to read additional information.

· The HIDE keyword must be coded immediately after the last write sentence on the output line. The system field SY-LILLI is incremented each time a line feed character is encountered or any time an output line wraps to a second line if the line size is too small. Care must be taken to ensure that the detail line does not wrap, since the data objects you hide will not match the line selected by the user.

[image: image11.wmf]ã

SAP

AG 2002

DEMO:

Data Transport:

Hide Technique

--

AA NEW YORK SAN FRANCI

AZ ROME FRANKFURT

AZ TOKYO ROME

LH FRANKFURT NEW YORK

SY

-

LILLI

REPORT SAPBC405_ILBD_HIDE .

AT LINE

-

SELECTION

.

SELECT ...

WHERE

carrid

=

spfli

-

carrid

AND

connid

=

spfli

-

connid

.

1

4

3

2

5

Line Selection:

The Hide Technique

DEMO:

Data Transport:

Hide Technique

--

LH 400

02.01.2002 1,332.00 DEM

03.28.2002 1,332.00 DEM

04.17.2002 1,332.00 DEM

AT LINE

AT LINE

-

-

SELECTION.

SELECTION.

0400

LH

3

3

:

6

6

:

spfli

-

carrid

spfli

-

connid

:

spfli

-

carrid

spfli

-

connid

:

AA

0017

:

LH

0400

:

HIDE area of list level 0

Line

Field name

Value

6

· The individual steps of the above example are described below:

· The user selects a line for which data has been stored in the HIDE area. This can be done either by double clicking on a line or, if the field or line was written with HOTSPOT ON, a single click will react like a double click.The runtime system evaluates field SY-LILLI to determine the selected line: in this case line six.

· The runtime system jumps to the point in the HIDE area where data for this line is stored.

· The runtime system then inserts all values stored for the selected line in the HIDE area into their corresponding fields.

· The runtime system processes the event AT LINE-SELECTION and its corresponding program processing block.

· A detail list is created.

[image: image12.wmf]ã

SAP

AG 2002

Basic list

DL 1

DL 2

HIDE area

Basic list

. . .

HIDE area

Detail List

List buffer

Basic list

List buffer

Detail List

List buffer

Detail List

HIDE area

Detail List

Detail List Buffering

Display

Display

Display

· All the output for a list is saved in a list buffer. As a result, each list remains saved in the system until the list buffer is deleted. All the details lists whose list level is greater than the current list level are deleted automatically by the runtime system (that is, their list buffer is deleted). For example, when you branch from details list five to detail list three, the list buffers of detail lists four and five are deleted.

· Each list level is allocated its own HIDE area.

[image: image13.wmf]ã

SAP

AG 2002

REPORT sapbc405_

ilbd

_valid_line_

sel

.

...

GET

spfli

FIELDS ...

WRITE ...

HIDE:

spfli

-

carrid

,

spfli

-

connid

.

END

-

OF

-

SELECTION.

CLEAR

spfli

-

carrid

.

AT LINE

-

SELECTION.

CHECK NOT

spfli

-

carrid

IS INITIAL.

...

CLEAR

spfli

-

carrid

.

HIDE area

Valid line selection

CLEAR

CLEAR

spfli

spfli

-

-

carrid

carrid

.

.

CHECK NOT

CHECK NOT

spfli

spfli

-

-

carrid

carrid

IS INITIAL.

IS INITIAL.

CLEAR

CLEAR

spfli

spfli

-

-

carrid

carrid

.

.

DEMO:

Data Transport:

Hide Technique

--

LH 400

01.02.02 1.332,00 DEM

28.03.02 1.332,00 DEM

17.04.02 1.332,00 DEM

· You must ensure that when you choose a line for which no data has been stored in the HIDE area, this is interpreted as an invalid line selection. Invalid lines include headers and footers.

· When necessary, you can ensure that no detail lists are created for invalid line selections.

· The field spfli-carrid, whose contents have been stored in the HIDE area, is initialized in the programming example above. If a user chooses an invalid line, the runtime system will not find a value in the HIDE area. The field retains its initial value. The CHECK statement then reads this initial value and the program exits the current processing block (AT LINE-SELECTION). No detail list is generated and the current list buffer remains in view.

[image: image14.wmf]ã

SAP

AG 2002

Basic Techniques in Interactive Lists

Detail lists

Detail lists

Data transport

Data transport

Other techniques

Other techniques

[image: image15.wmf]ã

SAP

AG 2002

Setting GUI Titles

Title Flight data for airline &1

SET TITLEBAR 'T01'

[WITH <f1> <f2> ..<f9>]

Maintain title

Create Title

Double

-

click

Program

Title

code

SAPBC405_ILBD_GUI_TITLE

T01

OK

All titles

SY

-

TITLE

SY

-

TITLE

· Title names can be up to 20 characters in length and must be entered all in capital letters. A title that is set stays active until a new one is set.

· You can display up to 9 variables within the GUI title using SET TITLEBAR <TITLE> WITH <f1>. The total length of title including all variables cannot exceed 70 characters in length.

[image: image16.wmf]ã

SAP

AG 2002

TOP

-

OF

-

PAGE DURING LINE

-

SELECTION

.

REPORT sapbc405_

ilbd

_heading_i_lists

NO STANDARD PAGE HEADING.

TOP

-

OF

-

PAGE.

TOP

-

OF

-

PAGE DURING LINE

-

SELECTION

.

Basic list

Detail list

Page Headings for Detail Lists

TOP

TOP

-

-

OF

OF

-

-

PAGE DURING LINE

PAGE DURING LINE

-

-

SELECTION

SELECTION

.

.

· The TOP-OF-PAGE event is only processed when you create a basic list.

· The TOP-OF-PAGE DURING LINE-SELECTION event is used to create headers for each of the detail lists. Evaluate the system field SY-LSIND to determine which headings to display.

· TOP-OF-PAGE DURING LINE-SELECTION is triggered by the first output (such as WRITE) in each new list page.

· When the user selects a line, the system field SY-LISEL is populated with the image of the selected line. This can be used as a heading for the detail list buffer to show which list line was selected. Sample coding might be:

TOP-OF-PAGE DURING LINE-SELECTION.

FORMAT COLOR COL_HEADING

ULINE

WRITE: / sy-lisel.

ULINE.

[image: image17.wmf]ã

SAP

AG 2002

DEMO:

Modal Dialog Box

WINDOW STARTING AT <c1> <r1>

[ENDING AT <c2> <r2>].

REPORT sapbc405_

ilbd

_g_window.

DATA:

...

line1 TYPE i, line2 TYPE i.

...

AT LINE

-

SELECTION.

...

line1 =

sy

-

curow

+ 1.

line2 = line1 + 12.

WINDOW STARTING AT 10 line1

ENDING AT 65 line2.

´ WRITE ...

...

Creating Lists in Modal Dialog Boxes

DEMO:

Modal Dialog Box

AA NEW YORK SAN FRANCISCO

AZ ROME

FRANKFURT

AZ TOKYO ROM

LH FRANKFURT NEW YORK

LH

LH

QF

QF

SQ SINGAPORE SAN FRANCISCO

AT LINE

AT LINE

-

-

SELECTION.

SELECTION.

WINDOW STARTING AT 10 line1

WINDOW STARTING AT 10 line1

ENDING AT 65 line2.

ENDING AT 65 line2.

AZ 0555

19.05.2002 360.202 ITL

21.08.2002 360.202 ITL

<c1> <r1>

<c2> <r2>

Demo: Modal Dialog Box

· You can display the current detail list in a modal dialog box with statement WINDOW STARTING AT.

· The upper-left corner of a modal dialog box is positioned at column <c1> row <r1>. The count begins at zero/zero in the upper-left corner of the main window. If <r1> is less than or equal to zero, the list displays in full screen format instead of a modal dialog box.

· You can use the optional parameter ENDING to set the length and width of a modal dialog box: The lower-right corner is positioned at column <c2> row <r2>.

· You can create a title for the modal dialog box with SET TITLEBAR '<title>’, as well as a modal dialog box GUI. A custom GUI is not really necessary since the system automatically supplies a standard GUI for all modal dialog boxes.

[image: image18.wmf]ã

SAP

AG 2002

GET CURSOR FIELD <feld1>

[VALUE <feld2>].

REPORT sapbc405_

ilbd

_field_selection.

DATA:

... ,

field_name

(30),

field_value

(50).

...

AT LINE

-

SELECTION.

GET CURSOR FIELD field_name

VALUE field_value

.

CASE

field_name

.

WHEN

'SPFLI

-

CARRID'

.

...

WHEN

'SPFLI

-

CONNID'

.

...

ENDCASE.

Field Selection

DEMO:

Field Selection

--

CARRID CONNID CITYFROM

AA

0017 NEW YORK

AZ

0555 ROME

AZ

0789

TOKYO

LH

0400

FRANKFURT

DEMO:

Field Selection

LH:

Lufthansa

DEMO:

Field Selection

LH 0400

19.05.2002

21.08.2002

field_name(30), field_value(50).

field_name(30), field_value(50).

GET CURSOR FIELD field_name

GET CURSOR FIELD field_name

VALUE field_value.

VALUE field_value.

field_name.

field_name.

'SPFLI

'SPFLI

-

-

CARRID'.

CARRID'.

'SPFLI

'SPFLI

-

-

CONNID'.

CONNID'.

· You can use the GET CURSOR statement to create detail lists according to the cursor position. If a user clicks on one of the CARRID fields in the example above, the name of the corresponding airline is displayed. If a user clicks on one of the CONNID fields, all flight dates for that particular flight number are displayed instead.

· The parameter FIELD provides the name of an output field. The parameter VALUE provides the output value.

· The return value SY-SUBRC is set to:

· Value 0: The cursor is positioned on a field

· Value 4: The cursor is not positioned on a field

· Note: Do not use the value of parameter VALUE in the WHERE condition of a SELECT statement, because this can lead to type conversions for non-character fields that produce undesirable results. It is better to use the HIDE technique in this case.

[image: image19.wmf]ã

SAP

AG 2002

System Fields for Interactive Lists

SY

-

CUROW

SY

-

CUROW

2

SY

-

CPAGE

SY

-

CPAGE

1

SY

-

PAGNO

SY

-

PAGNO

SY

-

CUCOL

SY

-

CUCOL

3

SY

-

LILLI

SY

-

LILLI

1

2

3

4

1

2

3

4

5

6

7

8

5

6

7

8

9

10

9

10

1

2

3

4

1

2

3

4

SY

-

LINNO

SY

-

LINNO

Basic list

. . .

SY

-

LSIND = 0

SY

-

LSIND = 0

SY

-

LISTI = 0

SY

-

LISTI = 0

DL 2

DL 1

SY

-

LSIND = 1

SY

-

LSIND = 1

SY

-

LISTI = 0

SY

-

LISTI = 0

SY

-

LSIND = 2

SY

-

LSIND = 2

SY

-

LISTI = 1

SY

-

LISTI = 1

· The following system fields are automatically supplied with values at each interactive event:

SY-LSIND
Index for the current list

SY-LISTI
Index of the last list displayed

SY-LILLI
Absolute number of a selected line in the list displayed

SY-CPAGE
Number of the upper-most displayed line in the list displayed

SY-CUCOL
Number of the column in the window where the cursor was last positioned in
the list displayed

SY-CUROW
Number of the line in the window where the cursor was last positioned in the
list displayed

SY-STACO
Number of the first column displayed in the list displayed

SY-STARO
Number of the first visible line in the top displayed page (SY-PAGE) in the list
displayed (not including header lines)

SY-UCOMM
Function code that triggered the interactive event in the list displayed

SY-PFKEY
Status of the list displayed

[image: image20.wmf]ã

SAP

AG 2002

Basic Techniques in Interactive Lists: Summary

You are now able to:

l

Describe what detail lists are and generate them.

l

Identify which interactive events exist.

l

Transport data between lists and programs.

l

Recognize an invalid line selection.

l

Create page headers in detail lists.

l

Create lists in modal dialog boxes.

Interactive Lists Exercises

	[image: image21.png]

	Unit: Interactive Lists

Topic: Printing Detail Lists

	[image: image22.png]

	When you have completed these exercises, you will be able to:

· Use interactive event AT LINE-SELECTION.

· Use the hide technique.

· Use valid line selection.

· Set GUI titles.

1-1
Copy or enhance your program Z##DAP1_..., or copy the sample solution, SAPBC405_DAPS_1, to program Z##ILB1_... . Sample solution for exercise: SAPBC405_ILBS_1.

The user needs to be able to display bookings for a flight in a detail list.

1-1-1
Enable the user to display the bookings for a flight in a detail list by selecting (Format HOTSPOT) a line with the flight dates. The detail list should contain the following fields:

bookid

(table sbook)
customid
(table sbook)
form

(table scustom)
name

(table scustom)
order_date
(table sbook)
class

(table sbook)
1-1-2
To do this, create an appropriate internal table in the TOP include (type: standard) and a working area.

1-1-3
Make sure that only flights for which seats are already occupied are output in HOTSPOT format (sflight-seatsocc > 0).

1-1-4
Output the booking number and the customer number in color COL_KEY, and the other fields in color COL_NORMAL.

1-1-5
No other details option should be possible within the booking list.

1-2
Prevent invalid line selections.

1-3
Collect the required data for the detail list at event AT LINE-SELECTION.

1-3-1
Encapsulate the data collection and the data output in one subroutine each. Read the data from table SBOOK and the corresponding data from table SCUSTOM. The key relationshi[p between SBOOK and SCUSTOM is SBOOK-BOOKID=SCUSTOM-CUSTOMID.

There are two ways of reading the data:

· You can read the data from table SBOOK in a SELECT loop and then read the appropriate data record from SCUSTOM (SELECT SINGLE).
· You can program an INNER JOIN for both tables.

1-3-2
If the user selects a flight for which no seats have yet been booked, then display information message 004 from message class BC405.

1-4
Set a GUI title for the basic list and the detail list.

1-4-1
The title of the basic list should contain the dates specified in the selection screen (flight connections from … to …).

Exercises

	[image: image23.png]

	Unit: Interactive Lists

Topic: Printing Detail Lists

	[image: image24.png]

	When you have completed these exercises, you will be able to:

· Utilize the cursor position.

· Display lists in a modal dialog window.

· Set headers in detail lists.

2-1
Copy or enhance your program Z##ILB1_..., or copy the sample solution, SAPBC405_ILBS_1, to program Z##ILB2_... Sample solution for exercise: SAPBC405_ILBS_2.

Give the user an option to display additional information for airlines in a modal dialog window.

2-1-1
Allow the user to display additional information for the airline by selecting the airline code. To do this, output the name, short description, and the local currency of the airline in a modal dialog window.

Position the modal dialog box in such a way that it is opened in the line that the user has selected, but three columns further right. Use the system variables SY-CUCOL and SY-CUROW.

2-1-2
To control the output of the detail list for event AT LINE-SELECTION, use the name of the field where the cursor was positioned when the event was triggered (GET CURSOR ...).

2-1-3
Encapsulate the collection of the appropriate data (table SCARR) and its output in a subroutine.

2-1-4
Display a page header in both the dialog window and in the booking list. The booking list should contain the short name of the airline, the flight number, and the flight date. Display column headers in the booking list.

2-1-5
Ensure that the modal dialog box has a GUI title.
Interactive Lists Solutions

	[image: image25.png]

	Unit: Interactive Lists

Topic: Printing Detail Lists

&---

*& Report SAPBC405_ILBS_1 *

*& *

&---

*& Solution; Exercise 1; Basic Techniques ... *

*& *

&---

INCLUDE bc405_ilbs_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.
 ULINE.

 WRITE: / sy-vline,

 'Flight data'(001),

 AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, 'Departure location'(004), AT line_size sy-vline.

 WRITE: sy-vline, 'Arrival location'(004), AT line_size sy-vline.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003),

 AT pos_c3 'Price'(006),

 AT pos_c4 'Max.'(008),

 AT pos_c5 'Occ.'(009),

 AT line_size sy-vline.

 ULINE.

&---

*& Event INITIALIZATION

&---

INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID

 MOVE: 'AA' TO so_car-low,

 'QF' TO so_car-high,

 'BT' TO so_car-option,

 'I' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

 MOVE: 'AZ' TO so_car-low,

 'EQ' TO so_car-option,

 'E' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

&---

*& Event AT SELECTION-SCREEN ON BLOCK PARAM

&---

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty

 CHECK national = 'X' AND country = space.

 MESSAGE e003(bc405).

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Checking the output parameters

 CASE mark.

 WHEN all.

* Radiobutton ALL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt.

 WHEN national.

* Radiobutton NATIONAL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr = spfli~countryto

 AND spfli~countryfr = country.

 WHEN internat.

* Radiobutton INTERNAT is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr NE spfli~countryto.

 ENDCASE.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

*SORT it_flights BY carrid connid fldate.

* Control Level Processing: the internal table has to be sorted

 SORT it_flights BY cityfrom cityto carrid connid.

* Data output

 PERFORM data_output.

* clear hidden field for valid line selection

 CLEAR: wa_flights-fldate.

* Set GUI title for base list

 SET TITLEBAR 'T_BASE' WITH so_fdt-low so_fdt-high.

&---

*& Event AT LINE-SELECTION

&---

AT LINE-SELECTION.

* no higher display lists allowed

 CHECK sy-lsind < 2.

* only valid line selections

 CHECK NOT wa_flights-fldate IS INITIAL.

 IF wa_flights-seatsocc < 1.

* info message for flights without bookings

 MESSAGE i004(bc405).

 ELSE.

* get booking data

 PERFORM booking_select.

* output for flights with bookings

 PERFORM booking_output.

* clear hidden field for valid line selection

 CLEAR wa_flights-fldate.

 ENDIF.

* Set GUI title for secondary list

 SET TITLEBAR 'T_LIST1'.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Group Level: CITYFROM

 AT NEW cityfrom.

 NEW-PAGE.

 FORMAT COLOR COL_GROUP INTENSIFIED ON.

 WRITE: / sy-vline, wa_flights-cityfrom,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYTO

 AT NEW cityto.

 FORMAT COLOR COL_GROUP INTENSIFIED OFF.

 WRITE: / sy-vline, wa_flights-cityto,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Single Record Processing

* Hotspot off, if no bookings exist

 IF wa_flights-seatsocc < 1.

 FORMAT HOTSPOT OFF.

 ELSE.

 FORMAT HOTSPOT ON.

 ENDIF.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 wa_flights-seatsmax,

 wa_flights-seatsocc,

 AT line_size sy-vline.

* Hide Fields

 HIDE: wa_flights-carrid, wa_flights-connid, wa_flights-fldate,

 wa_flights-seatsocc.

 FORMAT RESET.

* Group Level: CONNID

 AT END OF connid.

 SUM.

 FORMAT COLOR COL_TOTAL.

 WRITE: / sy-vline,

 'Total'(007),

 wa_flights-seatsmax UNDER wa_flights-seatsmax,

 wa_flights-seatsocc UNDER wa_flights-seatsocc,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYFROM

 AT END OF cityfrom.

 ULINE.

 ENDAT.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

&---

*& Form BOOKING_OUTPUT

&---

* output of bookings

--

FORM booking_output.

 FORMAT COLOR COL_NORMAL.

 LOOP AT it_book INTO wa_book.

 WRITE: / wa_book-bookid COLOR COL_KEY,

 wa_book-customid COLOR COL_KEY,

 wa_book-form,

 wa_book-name,

 wa_book-order_date,

 wa_book-class,

 AT sy-linsz space.

 ENDLOOP.

ENDFORM. " BOOKING_OUTPUT
&---

*& Form BOOKING_SELECT

&---

* selection of booking data

--

FORM booking_select.

REFRESH it_book.

* Selection via SELECT SINGLE

* SELECT bookid customid class order_date FROM sbook

* INTO CORRESPONDING FIELDS OF wa_book

* WHERE carrid = wa_flights-carrid

* AND connid = wa_flights-connid

* AND fldate = wa_flights-fldate.

* SELECT SINGLE name form telephone FROM scustom

* INTO CORRESPONDING FIELDS OF wa_book

* WHERE id = wa_book-customid.

* APPEND wa_book TO it_book.

* ENDSELECT.

* Selection via INNER JOIN

 SELECT bookid customid class order_date

 FROM sbook INNER JOIN scustom

 ON sbook~customid = scustom~id

 INTO CORRESPONDING FIELDS OF TABLE it_book

 WHERE carrid = wa_flights-carrid

 AND connid = wa_flights-connid

 AND fldate = wa_flights-fldate.

ENDFORM. " BOOKING_SELECT
&---

*& Include BC405_ILBS_1TOP *

*& *

&---

REPORT sapbc405_ilbs_1 LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Linetype of internal table

TYPES: BEGIN OF linetype,

 cityfrom LIKE spfli-cityfrom,

 cityto LIKE spfli-cityto,

 carrid LIKE spfli-carrid,

 connid LIKE spfli-connid,

 countryfr LIKE spfli-countryfr,

 countryto LIKE spfli-countryto,

 fldate LIKE sflight-fldate,

 price LIKE sflight-price,

 currency LIKE sflight-currency,

 seatsmax LIKE sflight-seatsmax,

 seatsocc LIKE sflight-seatsocc,

 END OF linetype.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 pos_c3 TYPE i VALUE 30,

 pos_c4 TYPE i VALUE 58,

 pos_c5 TYPE i VALUE 68,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

* DATA: it_flights LIKE TABLE OF dv_flights,

* wa_flights LIKE dv_flights.

* Internal table type linetype

DATA: it_flights TYPE STANDARD TABLE OF linetype,

 wa_flights TYPE linetype.

* Work area and itab for bookings

DATA: BEGIN OF wa_book,
 bookid LIKE sbook-bookid,

 customid LIKE sbook-customid,

 class LIKE sbook-class,

 order_date LIKE sbook-order_date,

 name LIKE scustom-name,

 form LIKE scustom-form,

 END OF wa_book,

 it_book LIKE TABLE OF wa_book.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param

 WITH FRAME TITLE text-tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT 'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.

Solutions

	[image: image26.png]

	Unit: Interactive Lists

Topic: Printing Detail Lists

&---

*& Report SAPBC405_ILBS_2 *

*& *

&---

*& Solution; Exercise 2; Basic Techniques ... *

*& *

&---

INCLUDE bc405_ilbs_2top.

<<<<<<<< *************** >>>>>>>

 Not all events shown here. See above for missing events

<<<<<<<< *************** >>>>>>>

&---

*& Event AT LINE-SELECTION

&---

AT LINE-SELECTION.

* no higher display lists allowed

 CHECK sy-lsind < 2.

* get cursor position

 GET CURSOR FIELD field_name.

 CASE field_name.
 WHEN 'WA_FLIGHTS-CARRID'.

* Set GUI-title for the dialog box

 SET TITLEBAR 'T_LIST_MODAL'.

* output of carrier details

 PERFORM carrier_output.

 WHEN OTHERS.

* only valid line selections

 CHECK NOT wa_flights-fldate IS INITIAL.

 IF wa_flights-seatsocc < 1.

* info message for flights without bookings

 MESSAGE i004(bc405).

 ELSE.

* get booking data

 PERFORM booking_select.

* output for flights with bookings

 PERFORM booking_output.

 ENDIF.

* Set GUI title for secondary list

 SET TITLEBAR 'T_LIST1'.

 ENDCASE.

* clear hidden fields for valid line selection

 CLEAR: wa_flights-fldate, wa_flights-carrid.

&---

*& Event TOP-OF-PAGE DURING LINE-SELECTION

&---

TOP-OF-PAGE DURING LINE-SELECTION.
 CASE field_name.

 WHEN 'WA_FLIGHTS-CARRID'.

 FORMAT COLOR COL_HEADING.

 WRITE: / 'Detail display'(d10).

 ULINE.

 WHEN OTHERS.

* format for page headings on the detail list

 FORMAT COLOR COL_HEADING.

* title of the detail list

 WRITE: / 'Bookings for'(d00),

 wa_flights-carrid NO-GAP,

 wa_flights-connid,

 wa_flights-fldate,

 AT sy-linsz space.

 ULINE.

* headings of the detail list

 WRITE: / 'Booking'(d01),

 'Customer no.'(d02),

 'Title'(d03),

 'Name'(d04),

 'Book.date'(d05),

 'Class'(d06),

 AT sy-linsz space.

 ENDCASE.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Group Level: CITYFROM

 AT NEW cityfrom.

 NEW-PAGE.

 FORMAT COLOR COL_GROUP INTENSIFIED ON.

 WRITE: / sy-vline, wa_flights-cityfrom,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYTO

 AT NEW cityto.

 FORMAT COLOR COL_GROUP INTENSIFIED OFF.

 WRITE: / sy-vline, wa_flights-cityto,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Single Record Processing

* Hotspot off, if no bookings exist

 IF wa_flights-seatsocc < 1.

 FORMAT HOTSPOT OFF.

 ELSE.

 FORMAT HOTSPOT ON.

 ENDIF.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 wa_flights-seatsmax,

 wa_flights-seatsocc,

 AT line_size sy-vline.

* Hide Fields

 HIDE: wa_flights-carrid, wa_flights-connid, wa_flights-fldate,

 wa_flights-seatsocc.

 FORMAT RESET.

* Group Level: CONNID

 AT END OF connid.

 SUM.

 FORMAT COLOR COL_TOTAL.

 WRITE: / sy-vline,

 'Total'(007),

 wa_flights-seatsmax UNDER wa_flights-seatsmax,

 wa_flights-seatsocc UNDER wa_flights-seatsocc,

 AT line_size sy-vline.

 FORMAT RESET.

 ENDAT.

* Group Level: CITYFROM

 AT END OF cityfrom.

 ULINE.

 ENDAT.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

&---

*& Form BOOKING_OUTPUT

&---

* output of bookings

--

FORM booking_output.

 FORMAT COLOR COL_NORMAL.

 LOOP AT it_book INTO wa_book.

 WRITE: / wa_book-bookid COLOR COL_KEY,

 wa_book-customid COLOR COL_KEY,

 wa_book-form,

 wa_book-name,

 wa_book-order_date,

 wa_book-class,

 AT sy-linsz space.

 ENDLOOP.

ENDFORM. " BOOKING_OUTPUT

&---

*& Form BOOKING_SELECT

&---

* selection of booking data

--

FORM booking_select.

REFRESH it_book.

* Selection via SELECT SINGLE

* SELECT bookid customid class order_date FROM sbook

* INTO CORRESPONDING FIELDS OF wa_book

* WHERE carrid = wa_flights-carrid

* AND connid = wa_flights-connid

* AND fldate = wa_flights-fldate.

* SELECT SINGLE name form telephone FROM scustom

* INTO CORRESPONDING FIELDS OF wa_book

* WHERE id = wa_book-customid.

* APPEND wa_book TO it_book.

* ENDSELECT.

* Selection via INNER JOIN

 SELECT bookid customid class order_date

 FROM sbook INNER JOIN scustom

 ON sbook~customid = scustom~id

 INTO CORRESPONDING FIELDS OF TABLE it_book

 WHERE carrid = wa_flights-carrid

 AND connid = wa_flights-connid

 AND fldate = wa_flights-fldate.

ENDFORM. " BOOKING_SELECT

&---

*& Form CARRIER_OUTPUT

&---

* selection and output of carrier data

--

FORM carrier_output.

* Local Variables

 DATA: pos_col LIKE sy-cucol.

* get scarr data

 SELECT SINGLE carrname currcode INTO (carrname, currcode)

 FROM scarr WHERE carrid = wa_flights-carrid.

 WRITE: / 'Airline:'(d11), carrname,

 / 'Airline code:'(d12), wa_flights-carrid,

 / 'Local currency:'(d13), currcode.

* Calculate the column position

 pos_col = sy-cucol + 3.

* set window

 WINDOW STARTING AT pos_col sy-curow.

&---

*& Include BC405_ILBS_2TOP *

*& *

&---

REPORT sapbc405_ilbs_2 LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Linetype of internal table

TYPES: BEGIN OF linetype,

 cityfrom LIKE spfli-cityfrom,

 cityto LIKE spfli-cityto,

 carrid LIKE spfli-carrid,

 connid LIKE spfli-connid,

 countryfr LIKE spfli-countryfr,

 countryto LIKE spfli-countryto,

 fldate LIKE sflight-fldate,

 price LIKE sflight-price,

 currency LIKE sflight-currency,

 seatsmax LIKE sflight-seatsmax,

 seatsocc LIKE sflight-seatsocc,

 END OF linetype.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 pos_c3 TYPE i VALUE 30,

 pos_c4 TYPE i VALUE 58,

 pos_c5 TYPE i VALUE 68,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

* DATA: it_flights LIKE TABLE OF dv_flights,

* wa_flights LIKE dv_flights.

* Internal table type linetype

DATA: it_flights TYPE STANDARD TABLE OF linetype,

 wa_flights TYPE linetype.

* Work area and itab for bookings

DATA: BEGIN OF wa_book,

 bookid LIKE sbook-bookid,

 customid LIKE sbook-customid,

 class LIKE sbook-class,

 order_date LIKE sbook-order_date,

 name LIKE scustom-name,

 form LIKE scustom-form,

 END OF wa_book,

 it_book LIKE TABLE OF wa_book.

* Variables for cursor position and output

DATA: field_name(30),
 carrname LIKE scarr-carrname,

 currcode LIKE scarr-currcode.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param

 WITH FRAME TITLE text-tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT 'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.

© SAP AG
TAW12
19-24

