
0 [image: image1.wmf]ã

SAP

AG 2002

Programming Data Retrieval

Contents:

l

Read data from multiple transparent tables.

l

Evaluate the best technique for optimal performance.

[image: image2.wmf]ã

SAP

AG 2002

Data Retrieval: Objectives

At the conclusion of this unit, you will be able to:

l

Implement

database read accesses across multiple

tables.

l

Rate

the different techniques with regard to optimized

performance.

[image: image3.wmf]ã

SAP

AG 2002

ABAP program

GET

PUT

Logical Database

Open SQL

Native SQL

Database

Database

Data Retrieval:

Internal

· Whenever a logical database cannot supply your program with all necessary data, you must program database access directly into the program itself. This can be done using either Open SQL or Native SQL statements.

· Open SQL is preferable to Native SQL since it is not database specific and guarantees that your program is independent of the database engine. Use of Open SQL allows for portability between different RDMBS systems or should your company change to a different database system. ABAP Open SQL is completely integrated in to the Workbench which provides syntax checking of SQL statements. ABAP Open SQL also allows the R/3 System to make use of data buffers where appropriate.

· Native SQL statements are bound into a program using:

· EXEC SQL [PERFORMING <form>].

· <Native SQL statements>.

· ENDEXEC

· Do NOT use Native SQL to change the R/3 System database. The referential integrity of the R/3 System data is maintained by the R/3 System programs. Using Native SQL can quite easily corrupt your data. If you must use Native SQL, consider putting the code in an include so that it can be modified more easily if your RDBMS changes. Restrict your Native SQL to Standard SQL (ISO9075:1992)

[image: image4.wmf]ã

SAP

AG 2002

Database View in the ABAP Dictionary

Database View in the ABAP Dictionary

INNER JOIN, OUTER JOIN

INNER JOIN, OUTER JOIN

FOR ALL ENTRIES

FOR ALL ENTRIES

Nested SELECT Statements

Nested SELECT Statements

Reading Multiple Database Tables

· Reading multiple database tables requires careful consideration and considerable analysis to ensure that the data retrieval is efficient.

· To ensure optimal database performance, follow these general rules:

· Keep the amount of selected data as small as possible. Use WHERE conditions on all SELECT statements. Rather than accumulating values programmatically, see if you can use the SQL aggregate functions MIN, MAX, AVG, SUM, and COUNT(*). Use the DISTINCT phrase as opposed to an array fetch, sort, and DELETE ADJACENT DUPLICATES. Use subqueries and HAVING clauses where appropriate. Whenever possible, pass the data filtering and summarization off to the database engine rather than in your program logic.

· Keep data transfer between the application server and the database to a minimum. Do not use SELECT * in report programs. Instead, use a field list and ensure the fields are retrieved in the same sequence as they are defined in the data dictionary.

· Never use CORRESPONDING to move data.

· Reduce the number of database inquiries and avoid nested SELECT statements.

· When coding a WHERE clause, ensure that the conditions match an existing database index whenever possible. The database optimizer can only use an index for data retrieval up to the point where the index fields match the WHERE condition. Run a SQL trace (transaction ST05) and evaluate the result of the SQL you coded in your program.

[image: image5.wmf]ã

SAP

AG 2002

Database View in the ABAP Dictionary

Database View in the ABAP Dictionary

REPORT sapbc405_

gdad

_

db

_view.

...

SELECT

carrid carrname connid

cityfrom cityto fldate

seatsmax seatsocc

INTO TABLE

itab

_flights

FROM

sv

_flights

WHERE

cityfrom

IN so_

cityf

AND

cityto

IN so_

cityt

AND

seatsocc

<

sv

_flights~

seatsmax

ORDER BY

carrid connid fldate

.

...

Dictionary

:

Database view

sv

_flights

Table

Join conditions

View fields

sv

sv

_flights

_flights

Reading Multiple Database Tables I

· You can create database views in the ABAP Dictionary. Views are typically application specific and allow you to work with multiple database tables. Database views are realized on the database as an INNER JOIN.

· From Release 4.0, forward, you can buffer database views. You can then read from views using the SAP System buffer on the relevant application server. The same rules apply when buffering views as when buffering tables.

· Database view advantages:

· Central maintenance

· Accessible to all users

· Only one SELECT statement is required in the program

· One disadvantage of the view is its low flexibility.

[image: image6.wmf]ã

SAP AG 2003

REPORT sapbc405_

gdad

_inner_join_2tab.

...

SELECT

spfli

~

carrid spfli

~

connid

spfli

~

cityfrom spfli

~

cityto

sflight

~

fldate sflight

~

seatsmax

sflight

~

seatsocc

INTO TABLE

itab

_flights

FROM

spfli

INNER JOIN

sflight

ON

spfli

~

carrid

=

sflight

~

carrid

AND

spfli

~

connid

=

sflight

~

connid

WHERE

spfli

~

carrid

IN so_

carr

AND

spfli

~

connid

IN so_

conn

.

...

INNER JOIN

INNER JOIN

INNER JOIN

A

a1

a2

a2

B

b1

b2

b3

C

c1

c2

c3

A

a1

a2

a2

B

b1

b2

b3

D

d1

d2

d3

D

d1

d3

A

a1

a2

B

b1

b3

C

c1

c3

INNER JOIN

INNER JOIN

ON

ON

Reading Multiple Database Tables IIA

· The transparent database tables are combined to form one results table representing the resulting set of a join. The join conditions are applied to this results table. The resulting composite for an inner join logic contains those records that have matching records in each transparent table only.

· Join conditions are not limited to key fields. They can be declared using any fields with a foreign key relationship defined or, in some cases, between fields with a common domain.

· If columns from two tables have the same name, ensure that the field labels are unique by prefixing the table name or alias name.

· A table join is an efficient way to read from the database. The database decides which table is read first and which index is selected.

[image: image7.wmf]ã

SAP AG 2003

REPORT sapbc405_

gdad

_outer_join.

...

SELECT

scarr

~

carrid scarr

~

carrname

spfli

~

connid spfli

~

cityfrom

spfli

~

cityto

INTO TABLE

itab

_flights

FROM

scarr

LEFT outer JOIN

spfli

ON

scarr

~

carrid

=

spfli

~

carrid

ORDER BY

scarr

~

carrid spfli

~

connid

.

...

OUTER JOIN

OUTER JOIN

LEFT OUTER JOIN

D

d1

d2

d3

E

e1

e2

e3

A

a1

a2

a2

B

b1

b2

b3

C

c1

c2

c3

A

a1

a2

a2

D

d1

d2

d3

E

e1

e2

e3

A

a1

a2

a2

a2

B

b1

b2

b3

b3

C

c1

c2

c3

c3

LEFT OUTER JOIN

LEFT OUTER JOIN

ON

ON

Reading Multiple Database Tables IIB

· With a LEFT OUTER JOIN, the results tables can also contain entries from the designated left-hand table without the presence of corresponding data records (join conditions) from the table on the right. These table fields are filled by the database with null values. However, the null values are initialized according to the ABAP type before they are added to your program.

· It makes sense to use a LEFT OUTER JOIN when data from the table on the left is required but there are no corresponding entries in the table on the right for this data. For example, sapbc405_gdad_outer_join: not all airlines (table scarr) have flights listed (table spfli), but all airline names are supposed to be displayed in the list.

· The following limitations apply for the Left Outer Join:

· You can only have a table or a view to the right of the JOIN operator, you cannot have another join statement

· Only AND can be used as a logical operator in an ON condition.

· Each comparison in the ON condition must contain a field from the table on the right.

· If the FROM clause contains an Outer Join, then all ON conditions must contain at least one 'true' JOIN condition (a condition that contains a field from tab1 and a field from tab2).

[image: image8.wmf]ã

SAP

AG 2002

FOR ALL ENTRIES

FOR ALL ENTRIES

REPORT sapbc405_

gdad

_for_all_entries.

... .

SELECT

carrid connid

...

INTO TABLE

itab

_

spfli

FROM

spfli

WHERE

.

*

Check, if at least one

dataset

is found

IF

sy

-

subrc ne

0. EXIT. ENDIF.

*

Delete Duplicates

SELECT

carrid connid fldate

...

INTO TABLE

itab

_

sflight

FROM

sflight

FOR ALL ENTRIES IN

itab

_

spfli

WHERE

carrid

=

itab

_

spfli

-

carrid

AND

connid

=

itab

_

spfli

-

connid

.

.... .

itab

_

spli

where (

carrid

= 'LH'

and

connid

= '0400')

or (

carrid

= 'LH'

and

connid

= '0402')

or (.

. .

Conversion

LH

LH

0400 ...

0402 ...

FOR ALL ENTRIES IN

FOR ALL ENTRIES IN

IF

IF

sy

sy

-

-

subrc ne

subrc ne

0. EXIT.

0. EXIT.

ENDIF.

ENDIF.

Reading Multiple Database Tables III

SORT

SORT

itab

itab

_

_

spfli

spfli

.

.

DELETE ADJACENT DUPLICATES FROM

DELETE ADJACENT DUPLICATES FROM

itab

itab

_

_

spfli

spfli

· FOR ALL ENTRIES works with the database in a quantity-oriented manner. Initially, all data is collected in an internal table. You must evaluate the value of SY-SUBRC after each SELECT statement. If the result of the first array fetch returns no data, the following SELECT statements will retrieve all entries from the database.

· SELECT...FOR ALL ENTRIES IN <itab> is treated like a SELECT statement with an external OR condition (depending on the optimizer and profile parameters). The system only selects those table entries that meet the logical condition (WHERE carrid = itab_sflight-carrid), replacing the placeholders (itab_spfli-carrid) with values from each entry in the internal table itab_spfli. Note that itab_spfli-carrid is a placeholder, and not a component of the internal table. Duplicates are not allowed. The internal table can, in principle, be as large as you want it to be.

· Using FOR ALL ENTRIES is one way to approximate an SQL join or a database view. The join and the view will typically yield significantly better performance than FOR ALL ENTRIES.

[image: image9.wmf]ã

SAP

AG 2002

Reading Multiple Database Tables IV

Nested SELECT Statements

Nested SELECT Statements

REPORT sapbc405_

gdad

_nested_selects

.

... .

SELECT

carrid connid cityfrom

...

INTO

wa

_

spfli

FROM

spfli

WHERE

cityfrom

IN so_

cityf

AND

cityto

IN so_

cityt

.

APPEND

wa

_

spfli

TO

itab

_

spfli

.

SELECT

carrid connid fldate

...

INTO

wa

_

sflight

FROM

sflight

WHERE

carrid

=

wa

_

spfli

-

carrid

AND connid = wa_spfli

-

connid.

APPEND wa_sflight TO itab_sflight.

SELECT

carrid connid fldate bookid ...

INTO wa_sbook FROM sbook

WHERE carrid = wa_sflight

-

carrid

AND connid = wa_sflight

-

connid

AND fldate = wa_sflight

-

fldate.

APPEND wa_sbook TO itab_sbook.

ENDSELECT

.

ENDSELECT

.

ENDSELECT

.

... .

SELECT

SELECT

SELECT

SELECT

SELECT

SELECT

ENDSELECT.

ENDSELECT.

ENDSELECT.

ENDSELECT.

ENDSELECT.

ENDSELECT.

· When reading data from multiple transparent tables, it is important to optimize performance of the database access. Another method for reading related tables is to use nested SELECT statements. This technique should be avoided and used only as a last resort when no other data retrieval method is possible. The biggest disadvantage of the nested SELECT is that the inner SELECT is executed for each record retrieved by the outer SELECT. This leads to very poor performance in client/server environments.

· From Release 4.0, forward, you can also work with subqueries. Refer to the online documentationfor more information.

[image: image10.wmf]ã

SAP

AG 2002

Programming Data Retrieval: Summary

You are now able to:

l

Implement

database read accesses across multiple

tables.

l

Rate

the different techniques with regard to optimized

performance.

Programming Data Retrieval Exercises

	[image: image11.png]

	Unit: Programming Data Retrieval

Topic: Inner Join

	[image: image12.png]

	When you have completed these exercises, you will be able to:

· Use an ABAP join to read data from several different DB tables.

1-1
Copy or enhance your program Z##SSC1_..., or copy the sample solution, SAPBC405_SSCS_1, to program Z##GDA1_... . Sample solution for exercise: SAPBC405_GDAS_1.

1-1-1
Replace the data collected through database view dv_flights with an internal INNER JOIN performed on the database.

1-2
Deactivate (mark with an asterix (*)) the three SELECT statements at START-OF-SELECTION. Program INNER JOINs that fill internal table it_flights with data from tables SPFLI and SFLIGHT in the database.

Note:

The structure of the internal table it_flights does not correspond exactly to the combination of tables SPFLI and SFLIGHT. You must ensure that the fields are copied to the fields of the same name in the target table.

Programming Data Retrieval Solutions

	[image: image13.png]

	Unit: Programming Data Retrieval

Topic: Inner Join

&---

*& Report SAPBC405_GDAS_1 *

*& *

&---

*& Solution: Exercise 1, Internal Data Collection

*& *

&---

INCLUDE bc405_gdas_1top.

&---

*& Event TOP-OF-PAGE

&---

TOP-OF-PAGE.

* Title

 FORMAT COLOR COL_HEADING INTENSIFIED ON.

 ULINE.

 WRITE: / sy-vline,

 'Flight data'(001),

 AT line_size sy-vline.

 ULINE.

* Column header

 FORMAT COLOR COL_HEADING INTENSIFIED OFF.

 WRITE: sy-vline, AT pos_c1 'Flight'(002).

* Fix left scroll boundary

 SET LEFT SCROLL-BOUNDARY.

 WRITE: 'Date'(003) ,

 'Departure location'(004),

 'Arrival location'(005),

 'Price'(006),

 AT line_size sy-vline.

 ULINE.

&---

*& Event INITIALIZATION

&---

INITIALIZATION. " OPTIONAL

* Initialize select-options for CARRID

 MOVE: 'AA' TO so_car-low,

 'QF' TO so_car-high,

 'BT' TO so_car-option,

 'I' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

 MOVE: 'AZ' TO so_car-low,

 'EQ' TO so_car-option,

 'E' TO so_car-sign.

 APPEND so_car.

 CLEAR so_car.

&---

*& Event AT SELECTION-SCREEN ON BLOCK PARAM

&---

AT SELECTION-SCREEN ON BLOCK param. " OPTIONAL

* check country for national flights is not empty

 CHECK national = 'X' AND country = space.

 MESSAGE e003(bc405).

&---

*& Event START-OF-SELECTION

&---

START-OF-SELECTION.

* Checking the output parameters

 CASE mark.

 WHEN all.

* Radiobutton ALL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt.

 SORT it_flights BY carrid connid fldate.

 WHEN national.

* Radiobutton NATIONAL is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr = spfli~countryto

 AND spfli~countryfr = country.

 SORT it_flights BY carrid connid fldate.

 WHEN internat.

* Radiobutton INTERNAT is marked

 SELECT * FROM spfli INNER JOIN sflight

 ON spfli~carrid = sflight~carrid

 AND spfli~connid = sflight~connid

 INTO CORRESPONDING FIELDS OF TABLE it_flights

 WHERE spfli~carrid IN so_car

 AND spfli~connid IN so_con

 AND sflight~fldate IN so_fdt

 AND spfli~countryfr NE spfli~countryto.

 SORT it_flights BY carrid connid fldate.

 ENDCASE.

* Additional solution: dynamical WHERE condition
* PERFORM get_data.

&---

*& Event END-OF-SELECTION

&---

END-OF-SELECTION.

* Data output

 PERFORM data_output.

&---

*& Form DATA_OUTPUT

&---

* List output of flight data

--

FORM data_output.

* Loop at the internal table for writing data

 LOOP AT it_flights INTO wa_flights.

* Get a new page if CONNID has changed.

 ON CHANGE OF wa_flights-connid.

 NEW-PAGE.

 ENDON.

* Mark international flights

 FORMAT COLOR COL_KEY INTENSIFIED ON.

 IF wa_flights-countryfr EQ wa_flights-countryto.

 WRITE: / sy-vline, icon_space AS ICON CENTERED.

 ELSE.

 WRITE: / sy-vline, icon_bw_gis AS ICON CENTERED.

 ENDIF.

* Data output

 WRITE: wa_flights-carrid,

 wa_flights-connid.

 FORMAT COLOR COL_NORMAL INTENSIFIED OFF.

 WRITE: wa_flights-fldate,

 wa_flights-cityfrom,

 wa_flights-cityto,

 wa_flights-price CURRENCY wa_flights-currency,

 wa_flights-currency,

 AT line_size sy-vline.

 ENDLOOP.

ENDFORM. " DATA_OUTPUT

* <-------------- ADDITIONAL --------------> *

&---

*& Form GET_DATA

&---

* Instead of programming three different SELECT statements, these

* SELECTs can be combined in one dynamical WHERE condition.

**--

*

*FORM GET_DATA. "#EC CALLED
*

* DATA: WHERE_LINE(40),
* WHERE_TAB LIKE TABLE OF WHERE_LINE.

*

** only national flights requested

* IF NATIONAL NE SPACE.

* WHERE_LINE = 'p~countryfr = p~countryto'. "#EC NOTEXT
* APPEND WHERE_LINE TO WHERE_TAB.

* CONCATENATE 'AND p~countryfr =' "#EC NOTEXT

* '''' INTO WHERE_LINE

* SEPARATED BY SPACE.

* CONCATENATE WHERE_LINE COUNTRY '''' INTO WHERE_LINE.

* APPEND WHERE_LINE TO WHERE_TAB.

* ENDIF.

*

** only international flights requested

* IF INTERNAT NE SPACE.

* WHERE_LINE = 'p~countryfr NE p~countryto'. "#EC NOTEXT
* APPEND WHERE_LINE TO WHERE_TAB.

* ENDIF.

*

** Close WHERE-clause by dot

* WHERE_LINE = '.'.

* APPEND WHERE_LINE TO WHERE_TAB.

*

** Inner join with dynamical where clause

* SELECT P~CARRID P~CONNID

* P~COUNTRYFR P~CITYFROM P~AIRPFROM

* P~COUNTRYTO P~CITYTO P~AIRPTO

* F~FLDATE F~PRICE F~CURRENCY

* FROM SPFLI AS P JOIN SFLIGHT AS F

* ON P~CARRID = F~CARRID AND P~CONNID = F~CONNID

* INTO CORRESPONDING FIELDS OF TABLE IT_FLIGHTS

* WHERE P~CARRID IN SO_CAR

* AND P~CONNID IN SO_CON

* AND F~FLDATE IN SO_FDT

* AND (WHERE_TAB).

*

*ENDFORM. " GET_DATA
&---

*& Include BC405_GDAS_1TOP *

*& *

&---

REPORT sapbc405_gdas_1 LINE-SIZE 100 NO STANDARD PAGE HEADING.

* Include for using icons

INCLUDE <icon>.

* Constants for writing position

CONSTANTS: pos_c1 TYPE i VALUE 6,

 line_size TYPE i VALUE 100.

* Constant for CASE statement

CONSTANTS mark VALUE 'X'.

* Internal table like DDIC view DV_FLIGHTS

DATA: it_flights LIKE TABLE OF dv_flights,

 wa_flights LIKE dv_flights.

* Selections for connections

SELECTION-SCREEN BEGIN OF BLOCK conn WITH FRAME TITLE text-tl1.

SELECT-OPTIONS: so_car FOR wa_flights-carrid,

 so_con FOR wa_flights-connid.

SELECTION-SCREEN END OF BLOCK conn.

* Selections for flights

SELECTION-SCREEN BEGIN OF BLOCK flight WITH FRAME TITLE text-tl2.

SELECT-OPTIONS so_fdt FOR wa_flights-fldate NO-EXTENSION.

SELECTION-SCREEN END OF BLOCK flight.

* Output parameter

SELECTION-SCREEN BEGIN OF BLOCK param WITH FRAME TITLE text-tl3.

SELECTION-SCREEN BEGIN OF BLOCK radio WITH FRAME.

PARAMETERS: all RADIOBUTTON GROUP rbg1,

 national RADIOBUTTON GROUP rbg1,

 internat RADIOBUTTON GROUP rbg1 DEFAULT 'X'.

SELECTION-SCREEN END OF BLOCK radio.

PARAMETERS country LIKE wa_flights-countryfr.

SELECTION-SCREEN END OF BLOCK param.
© SAP AG
TAW12
16-18

