
0 [image: image1.wmf]ã

SAP AG 1999

l

Activation of ABAP Dictionary objects

l

Handling of dependent objects

l

Where

-

used list and R/3 Repository Information

System as seen by the ABAP Dictionary

Dependencies of ABAP Dictionary Objects

[image: image2.wmf]ã

SAP AG 2002

Course Objectives

At the end of this unit, you will be able to:

l

Differentiate between the active and inactive version of an

ABAP Dictionary object.

l

Describe the mechanism for handling dependent objects

in the ABAP Dictionary

l

Explain how the Repository Information System and the

Where

-

used list for ABAP Dictionary objects function

[image: image3.wmf]ã

SAP

AG 2002

Active and Inactive Versions

Active version

Inactive version

Active version

Active version

Field 1

Field 2

Field 3

Field 1

Field 2

Field 3

Field 4

Field 1

Field 2

Field 3

Field 4

Activate

Add Field 4 in the ABAP Dictionary

Field 2

Field 3

Field 1

· During development, you sometimes need to change an (active) object already used by the system. Such changes are supported in the ABAP Dictionary by separating the active and inactive versions.

· The active version of an ABAP Dictionary object is the version that the components of the runtime environment (for example ABAP processor, database interface) access. This version is not initially changed.

· An inactive version is created when an active object is changed. The inactive version can be saved without checking. It has no effect on the runtime system.

· At the end of the development process, the inactive version can be made the active version. This is done by activation. The inactive version of the object is first checked for consistency. If it is consistent, the inactive version replaces the active one. From now on, the runtime system uses the new active version.

· The above example shows how the object status changes. An active structure contains three fields. A field is added to this structure in the ABAP Dictionary. After this action, there is an active version with three fields and an inactive version with four fields. During activation, the active version is overwritten with the inactive version. The inactive version thus becomes the active version. After this action there is only the active version with four fields.

[image: image4.wmf]ã

SAP

AG 2002

Runtime Objects

Structure

Information about

the structure

Field information

Runtime object

of the structure

Data elements

Field 2

Field 3

Field 1

ABAP

Interpreter

Data

Data

element 1

element 1

Data

Data

element 2

element 2

Data

Data

element 3

element 3

Domain 1

Domain 1

Domain 2

Domain 2

Domain 3

Domain 3

· The information about a structure (or table) is distributed in the ABAP Dictionary in domains, data elements, and the structure definition. The runtime object (nametab) combines this information into a structure in a form that is optimized for access from ABAP programs. The runtime object is created when the structure is activated.

· The runtime objects of the structures are buffered so that the ABAP runtime system can quickly access this information.

· The runtime object contains information about the overall structure (for example, number of fields) and the individual structure fields (field name, position of the field in the structure, data type, length, number of decimal places, reference field, reference table, check table, conversion routine, etc.).

· The runtime object of a table contains further information needed by the database interface for accessing the table data (client dependence, buffering, key fields, etc.).

· Runtime objects are created for all ABAP Dictionary objects that can be used as types in ABAP programs. These are data elements, table types, and views, as well as structures and tables.

[image: image5.wmf]ã

SAP

AG 2002

Handling of Dependent Objects

Structure 3

Table 1

Structure 2

Structure 1

Table 2

includes

Domain

Domain

Data element 1

Data element 1

Data element 2

Data element 2

Data element 3

Data element 3

· If an object that is already active is modified, this can affect other objects that use it (directly or indirectly). These objects using another object are called dependent objects. On the one hand, it might be necessary to adjust the runtime objects of these dependent objects to the changes. On the other hand, a change might sometimes make a dependent object inconsistent.

· For this reason, the dependent objects are determined and activated (if necessary) when an active object is activated. The active versions of the dependent objects are activated again. In particular, new and inactive versions of objects using the changed object are not changed.

· Example: When you change a domain, for example, its data type, all the data elements, structures, and tables referring to this domain must be activated again. This activation is automatically triggered when the domain is activated. This ensures that all affected runtime objects are adjusted to the changed type information.

· If an ABAP Dictionary object has a table as dependent object, its database object as well as its runtime object might have to be adjusted when the dependent object is activated. The method used here will be discussed in the next unit.

[image: image6.wmf]ã

SAP

AG 2002

Where

-

Used Lists

Use

Where

-

used lists

Program 1

Program 2

Structure 3

Table 1

Structure 2

Structure 1

Domain

Domain

Table 2

Data element 1

Data element 1

Data element 2

Data element 2

Data element 3

Data element 3

· Changing an ABAP Dictionary object might also affect its dependent objects. Before making a critical change (such as changing the data type or deleting a field), you should define the set of objects affected in order to estimate the implications of the planned action.

· There is a Where-used list for each ABAP Dictionary object with which you can find all the objects that refer to this object. You can call the Where-used list from the maintenance transaction of the object.

· You can find direct and indirect usages of an ABAP Dictionary object with the where-used list. You also have to define which usage object types should be included in the search (for example, all structures and tables using a data element). You can also search for usages that are not ABAP Dictionary objects (for example, all programs using a table). The search can also be limited by development class or user namespace.

· If an object is probably used by several objects, you should perform the search in the background.

[image: image7.wmf]ã

SAP

AG 2002

Show all objects of type X

with attribute Y

Show all objects

of type X that

were changed by user Y

at time DDMMYYYY

Show all objects of type X

that use

o

bject Y

Show all table fields

with check table X

Information about

Information about

relationships

relationships

between tables

between tables

Proof of change

Proof of change

Where

Where

-

-

used list

used list

Search by attribute

Search by attribute

ABAP

ABAP

Dictionary

Dictionary

?

?

?

?

The Repository Information System ABAP

Dictionary

· The Repository Information System ABAP Dictionary is part of the general Repository Information System. It helps you search for ABAP Dictionary objects and their users.

· The Where-used list for Repository objects can be called from the information system. The information system also enables you to search for objects by their attributes.

· In addition to the object-specific search criteria (for example, buffering type for tables), you can search for all objects by development class, short description or author, and date of last change.

· The object lists created by the Repository Information System are entirely integrated in the ABAP Workbench. They permit you to navigate directly to the maintenance transactions of the objects found.

[image: image8.wmf]ã

SAP

AG 2002

Unit Summary

l

When an object is activated, the inactive version

becomes the active version (after a check). The old

active version is overwritten.

l

When an object that is already active is activated, any

active dependent objects are also activated. The

runtime object and the database object of these

dependent objects are also updated.

l

The Where

-

used list can be used to find all the

Repository objects that use an ABAP Dictionary object.

l

You can find ABAP Dictionary objects by their

attributes in the Repository Information System.

In the ABAP Dictionary there is an active and an inactive

version of an object. The runtime system uses the active

version and the development process edits the inactive

version.

Dependencies of ABAP Dictionary Objects Exercises
	[image: image9.png]

	Unit: Dependencies of ABAP Dictionary Objects

	[image: image10.png]

	At the conclusion of these exercises, you will be able to:

· Enhance tables and structures with fields

· Use the R/3 Repository Information System and the Where-used list for ABAP Dictionary objects

	[image: image11.wmf]

	Information about the head of the department should be stored in the employee management system. The change log should also be made more detailed. This exercise makes the appropriate enhancements to the tables and structures.

1-1
The change log for tables ZEMPLOY## and ZDEPMENT## is not precise enough. In addition to the person who made the last change and the date of this change, you also want to record the time of the last change. Have a suitable field inserted in both tables as easily as possible. Use data element S_TIME.

Make sure that the field is inserted in both tables. Check the activation log of the tables and structures involved.

	[image: image12.wmf]

	Start Program BC430_CHECK in Transaction SE38. It checks whether your solutions are correct.

1-2
Create a list of the following ABAP Dictionary objects:

1-2-1
All domains with fixed values whose names begin with Z.

1-2-2
All table fields that use data element S_FNAME.

1-2-3
All tables of the flight model (development class BC_DATAMODEL) that have delivery class A.

1-3
Determine all the programs that use table SFLIGHT.

1-4
What are the data elements created by your neighbors called?

Dependencies of ABAP Dictionary Objects Solutions
	[image: image13.png]

	Unit: Dependencies of ABAP Dictionary Objects

1-1
The fields for the change log can be found in the include structure ZCHANGE##. The new field should therefore be inserted in this structure. The field is automatically inserted in tables ZEMPLOY## and ZDEPMENT## using the include mechanism. Proceed as follows:

1)
In the initial screen of the ABAP Dictionary, select Data type and enter ZCHANGE## in the corresponding field. Choose Change.

2)
Select on tab page Components. Enter the name for the new field in the first free row of the component list and enter S_TIME in column Component type.

3)
Activate the structure.

4)
With Utilities (Activation log you can find the activation log of the structure. You can see here that tables ZEMPLOY## and ZDEPMENT## are activated as dependent objects and were enhanced with the new field.

5)
Go to display mode in the maintenance screen for table ZEMPLOY## (or ZDEPMENT##). Choose Utilities (Table contents (Create entries. You can see here that the table was really enhanced with the corresponding field.

1-2
All the exercises can be solved with the Repository Information System. You can do this from the initial screen of the ABAP Dictionary with Environment (Repository Information System. Expand the nodes for the ABAP Dictionary.

1)
Expand the node Basic objects. Select Domains. In the selection screen, enter Z* in the first field. Choose All selections. In the enhanced selection screen, select Only domains with fixed values. You can create the desired list with Execute.

2)
Choose Back twice to return to the initial screen of the Repository Information System. Expand the Fields node. Select Table fields. Choose All selections and enter S_FNAME in field Data element. You can create the desired list with Execute.

3)
Choose Back twice to return to the initial screen of the Repository Information System. Note Basic objects are still expanded. Select Database tables. Enter development class BC_DATAMODEL and (after choosing All selections) delivery class A in the selection screen. You can create the desired list with Execute.

1-3
Go to the initial screen of the ABAP Dictionary. Choose Database table and enter SFLIGHT in the corresponding field. Choose Where-used list. The usage in programs is already indicated (alone) in the next dialog box. You can create the desired list with Execute.

1-4
You can create the desired list again in the Repository Information System ABAP Dictionary. Expand the node Basic objects and select Data elements. You can define your neighbor's data elements with either a pattern search for the name (if your neighbors adhered to the given naming convention) or with Last changed by (after choosing All selections). If you have two groups of neighbors, you have to use Multiple selection. You can restrict the selection with the date of the last change (the last change should be no earlier than the beginning of the course) at least in the first case (naming convention).
© SAP AG
TAW12
6-11

