
0 [image: image1.wmf]ã

SAP AG 1999

l

Indexes

n

Primary index and

secondary index

n

Structure of an index

n

Data access using an index

l

Table buffering

n

Advantages of buffering

n

Local table buffers

n

Buffering types

n

Buffer synchronization

n

Which tables should be buffered?

Performance during Table Access

[image: image2.wmf]ã

SAP AG 2002

Course Objectives

At the end of this unit, you will be able to:

l

Judge when table accesses can be speeded up

by using indexes

l

Create indexes in the ABAP Dictionary

l

Explain the different buffering types

l

Judge when it makes sense to buffer a table and

which buffering type you should choose

l

Buffer a table using the technical settings

[image: image3.wmf]ã

SAP

AG 2002

Table SCOUNTER

Index on

AIRPORT

MANDT

CARRID

COUNTNUM

AIRPORT

001

001

001

001

001

001

001

001

001

001

001

001

001

001

LH

BA

UA

LH

BA

LH

AA

LH

BA

LH

LH

BA

LH

LH

00000005

00000004

00000001

00000002

00000003

00000007

00000001

00000003

00000001

00000001

00000004

00000002

00000006

00000008

ACA

ACE

BER

LCY

LHR

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

HAM

AIRPORT

P

ACA

ACE

BER

BER

DEN

FRA

HAM

LCY

LCY

LGW

LHR

LHR

MUC

RTM

1

2

3

6

7

8

14

4

9

10

5

11

12

13

Binary

search

Structure of an Index

SELECT * FROM

SCOUNTER WHERE

AIRPORT = 'LHR'.

MANDT

001

001

001

001

001

001

001

001

001

001

001

001

001

001

· An index can be used to speed up the selection of data records from a table.

· An index can be considered to be a copy of a database table reduced to certain fields. The data is stored in sorted form in this copy. This sorting permits fast access to the records of the table (for example using a binary search). Not all of the fields of the table are contained in the index. The index also contains a pointer from the index entry to the corresponding table entry to permit all the field contents to be read.

· When creating indexes, please note:

· An index can only be used up to the last specified field in the selection! The fields that are specified in the WHERE clause for a large number of selections should be in the first position.

· Only those fields whose values significantly restrict the amount of data are meaningful in an index.

· When you change a data record of a table, you must adjust the index sorting. Tables whose contents are frequently changed should not have too many indexes.

· Make sure that the indexes on a table are as disjunct as possible.

[image: image4.wmf]ã

SAP

AG 2002

TAB

Index A

F2 Z

F1 F2 F3

10

A3 10 Text

Access with Indexes

Index 0

F1 Z

Optimizer

SELECT * FROM TAB

WHERE F2 = `10

´.

Program

· The database optimizer decides which index on the table should be used by the database to access data records.

· You must distinguish between the primary index and secondary indexes of a table. The primary index contains the key fields of the table. The primary index is automatically created in the database when the table is activated. If a large table is frequently accessed such that it is not possible to apply primary index sorting, you should create secondary indexes for the table.

· The indexes on a table have a three-character index ID. 0 is reserved for the primary index. Customers can create their own indexes on SAP tables; their IDs must begin with Y or Z.

· If the index fields have key function, for example, they already uniquely identify each record of the table, an index can be called a unique index. This ensures that there are no duplicate index fields in the database.

· When you define a secondary index in the ABAP Dictionary, you can specify whether it should be created on the database when it is activated. Some indexes only result in a gain in performance for certain database systems. You can therefore specify a list of database systems when you define an index. The index is then only created on the specified database systems when activated.

[image: image5.wmf]ã

SAP

AG 2002

Communication system

Database

Data Access using the Buffer

Database interface

SELECT * FROM SBOOK

WHERE ...

ABAP program

R/3 table buffer

Database

processes

Database

buffer

· Table buffering increases the performance when the records of the table are read.

· The records of a buffered table are read directly from the local buffer of the application server on which the accessing transaction is running when the table is accessed. This eliminates time-consuming database accesses. The access improves by a factor of 10 to 100. The increase in speed depends on the structure of the table and on the exact system configuration. Buffering, therefore, can greatly increase the system performance.

· If the storage requirements in the buffer increase due to further data, the data that has not been accessed for the longest time is displaced. This displacement takes place asynchronously at certain times which are defined dynamically based on the buffer accesses. Data is only displaced if the free space in the buffer is less than a predefined value or the quality of the access is not satisfactory at this time.

· Entering $TAB in the command field resets the table buffers on the corresponding application server. Only use this command if there are inconsistencies in the buffer. In large systems, it can take several hours to fill the buffers. The performance is considerably reduced during this time.

[image: image6.wmf]ã

SAP AG 2002

Table Buffering

Application server 2

Application server 1

Table buffer

Table buffer

Program

Program

Program reads data from a

buffered table

Records are loaded

into the buffer

Database

TAB

· The R/3 System manages and synchronizes the buffers on the individual application servers. If an application program accesses data of a table, the database interfaces determines whether this data lies in the buffer of the application server. If this is the case, the data is read directly from the buffer. If the data is not in the buffer of the application server, it is read directly from the database and loaded into the buffer. The buffer can therefore satisfy the next access to this data.

· The buffering type determines which records of the table are loaded into the buffer of the application server when a record of the table is accessed. There are the following buffering types:

Full buffering: When a record of the table is accessed, all the records of the table are loaded into the buffer.

Generic buffering: When a record of the table is accessed, all the records whose left-justified part of the key is the same are loaded into the buffer.

Single-record buffering: Only the record that was accessed is loaded into the buffer.

[image: image7.wmf]ã

SAP

AG 2002

Application server

SELECT * FROM SCOUNTER WHERE

CARRID = 'LH' AND

COUNTNUM = '00000004'.

Buffer contents

00000001

00000001

00000002

00000003

00000004

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

00000001

001

001

001

001

001

001

001

001

001

001

001

001

001

001

ACA

ACE

BER

LCY

LHR

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

HAM

Database table SCOUNTER

AIRPORT

MANDT

CARRID

COUNTNUM

00000001

00000001

00000002

00000003

00000004

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

00000001

AA

BA

BA

BA

BA

LH

LH

LH

LH

LH

LH

LH

LH

UA

001

001

001

001

001

001

001

001

001

001

001

001

001

001

ACA

ACE

BER

LCY

LHR

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

HAM

Full Buffering

AA

BA

BA

BA

BA

LH

LH

LH

LH

LH

LH

LH

LH

UA

· With full buffering, the table is either completely or not at all in the buffer. When a record of the table is accessed, all the records of the table are loaded into the buffer.

· When you decide whether a table should be fully buffered, you must take the table size, the number of read accesses and the number of write accesses into consideration. The smaller the table is, the more frequently it is read and the less frequently it is written, the better it is to fully buffer the table.

· Full buffering is also advisable for tables having frequent accesses to records that do not exist. Since all the records of the table reside in the buffer, it is already clear in the buffer whether or not a record exists.

· The data records are stored in the buffer sorted by table key. When you access the data with SELECT, only fields up to the last specified key field can be used for the access. The left-justified part of the key should therefore be as large as possible for such accesses. For example, if the first key field is not defined, the entire table is scanned in the buffer. Under these circumstances, a direct access to the database could be more efficient if there is a suitable secondary index there.

[image: image8.wmf]ã

SAP

AG 2002

Application server

Buffer contents

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

LH

LH

LH

LH

LH

LH

LH

LH

001

001

001

001

001

001

001

001

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

Database table SCOUNTER

MANDT

CARRID

COUNTNUM

00000001

00000001

00000002

00000003

00000004

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

00000001

AA

BA

BA

BA

BA

LH

LH

LH

LH

LH

LH

LH

LH

UA

001

001

001

001

001

001

001

001

001

001

001

001

001

001

ACA

ACE

BER

LCY

LHR

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

HAM

AIRPORT

SELECT * FROM SCOUNTER WHERE

CARRID = 'LH' AND

COUNTNUM = '00000004'.

Generic Buffering

Generic key

· With generic buffering, all the records whose generic key fields agree with this record are loaded into the buffer when one record of the table is accessed. The generic key is a left-justified part of the primary key of the table that must be defined when the buffering type is selected. The generic key should be selected so that the generic areas are not too small, which would result in too many generic areas. If there are only a few records for each generic area, full buffering is usually preferable for the table. If you choose too large a generic key, too much data will be invalidated if there are changes to table entries, which would have a negative effect on the performance.

· A table should be generically buffered if only certain generic areas of the table are usually needed for processing.

· Client-dependent, fully buffered tables are automatically generically buffered. The client field is the generic key. It is assumed that not all of the clients are being processed at the same time on one application server. Language-dependent tables are a further example of generic buffering. The generic key includes all the key fields up to and including the language field.

· The generic areas are managed in the buffer as independent objects. The generic areas are managed analogously to fully buffered tables. You should therefore also read the information about full buffering.

[image: image9.wmf]ã

SAP

AG 2002

Buffer contents

00000004

LH

001

LCY

Database table SCOUNTER

MANDT

CARRID

COUNTNUM

00000001

00000001

00000002

00000003

00000004

00000001

00000002

00000003

00000004

00000005

00000006

00000007

00000008

00000001

AA

BA

BA

BA

BA

LH

LH

LH

LH

LH

LH

LH

LH

UA

001

001

001

001

001

001

001

001

001

001

001

001

001

001

ACA

ACE

BER

LCY

LHR

BER

DEN

FRA

LCY

LGW

LHR

MUC

RTM

HAM

AIRPORT

Application server

SELECT SINGLE * FROM SCOUNTER WHERE

CARRID = 'LH' AND

COUNTNUM = '00000004'.

Single

-

Record Buffering

· Only those records that are actually accessed are loaded into the buffer. Single-record buffering saves storage space in the buffer compared to generic and full buffering. The overhead for buffer administration, however, is higher than for generic or full buffering. Considerably more database accesses are necessary to load the records than for the other buffering types.

· Single-record buffering is recommended particularly for large tables in which only a few records are accessed repeatedly with SELECT SINGLE. All the accesses to the table that do not use SELECT SINGLE bypass the buffer and directly access the database.

· If you access a record that was not yet buffered using SELECT SINGLE, there is a database access to load the record. If the table does not contain a record with the specified key, this record is recorded in the buffer as non-existent. This prevents a further database access if you make another access with the same key.

· You only need one database access to load a table with full buffering, but you need several database accesses with single-record buffering. Full buffering is therefore generally preferable for small tables that are frequently accessed.

[image: image10.wmf]ã

SAP

AG 2002

Server 2

Buffer

TAB

SELECT * FROM TAB

WHERE FIELD = 'X'.

Server 1

Buffer

Synchronization table

1

1

2

2

TAB

Buffer Synchronization 1

· Since the buffers reside locally on the application servers, they must be synchronized after data has been modified in a buffered table. Synchronization takes place at fixed time intervals that can be set in the system profile. The corresponding parameter is rdisp/bufreftime and defines the length of the interval in seconds. The value must lie between 60 and 3600. A value between 60 and 240 is recommended.

· The following example shows how the local buffers of the system are synchronized. A system with two application servers is assumed.

· Starting situation: Neither server has yet accessed records of the table TAB to be fully buffered. The table therefore does not yet reside in the local buffers of the two servers.

Timepoint 1: Server 1 reads records from table TAB on the database.

Timepoint 2: Table TAB is fully loaded into the local buffer of server 1. Accesses from server 1 to the data of table TAB now use the local buffer of this server.

[image: image11.wmf]ã

SAP

AG 2002

SELECT * FROM TAB

WHERE FIELD = 'Y'.

Server 2

Buffer

TAB

Server 1

Buffer

Synchronization table

3

3

4

4

TAB

TAB

Buffer Synchronization 2

Timepoint 3: Server 2 accesses records of the table. Since the table does not yet reside in the local buffer of server 2, the records are read directly from the database.

Timepoint 4: Table TAB is loaded into the local buffer of server 2. Server 2 therefore also uses its local buffer to access data of TAB the next time it reads.

[image: image12.wmf]ã

SAP

AG 2002

Server 2

Buffer

TAB

DELETE * FROM TAB

WHERE FIELD = 'X'.

Server 1

Buffer

Synchronization table

TAB

TAB

TAB modified by

Server 1

5

5

6

6

7

7

Buffer Synchronization 3

Timepoint 5: Server 1 deletes records from table TAB and updates the database.

Timepoint 6: Server 1 writes an entry in the synchronization table.

Timepoint 7: Server 1 updates its local buffer.

[image: image13.wmf]ã

SAP

AG 2002

TAB

Synchronization table

TAB modified by

Server 1

SELECT * FROM TAB

WHERE FIELD = 'X'.

Server 2

Buffer

Server 1

Buffer

TAB

TAB

8

8

Buffer Synchronization 4

Timepoint 8: Server 2 accesses the deleted data records. Since table TAB resides in its local buffer, the access uses this local buffer.

· Server 2 therefore finds the records although they no longer exist in the database table.

· If the same access were made from an application program to Server 1, this program would recognize that the records no longer exist. At this time the behavior of an application program depends on the server on which it is running.

[image: image14.wmf]ã

SAP

AG 2002

Server 2

Buffer

TAB

Server 1

Buffer

Synchronization table

TAB

TAB

TAB modified by

Server 1

9

9

9

9

10

10

Synchronization

Buffer Synchronization 5

Timepoint 9: The moment of synchronization has arrived. Both servers look in the synchronization table to see if another server has modified one of the tables in its local buffer in the meantime.

Timepoint 10: Server 2 finds that table TAB has been modified by Server 1 in the meantime. Server 2 therefore invalidates the table in its local buffer. The next access from Server 2 to data of table TAB therefore uses the database. Server 1 does not have to invalidate the table in its buffer since it itself is the only one to modify table TAB. Server 1 therefore uses its local buffer again the next time to access records of table TAB.

[image: image15.wmf]ã

SAP

AG 2002

TAB

Synchronization table

SELECT * FROM TAB

WHERE FIELD = 'Y'.

Server 2

Buffer

Server 1

Buffer

TAB

TAB

11

11

12

12

Buffer Synchronization 6

Timepoint 11: Server 2 again accesses records of table TAB. Since TAB is invalidated in the local buffer of Server 2, the access uses the database.

Timepoint 12: The table is again loaded into the local buffer of Server 2. The information about table TAB is now consistent again in both servers and the database.

· Advantages and disadvantages of this method of buffer synchronization:

· Advantage: The load on the network is kept to a minimum. If the buffers were to be synchronized immediately after each modification, each server would have to inform all other servers about each modification to a buffered table via the network. This would have a negative effect on the performance.

· Disadvantage: The local buffers of the application servers can contain obsolete data between the moments of synchronization.

· This means that:

· Only those tables that are written very infrequently (read mostly) or for which such temporary inconsistencies are of no importance may be buffered.

· Tables whose entries change frequently should not be buffered. Otherwise there would be a constant invalidation and reload, which would have a negative effect on the performance.

[image: image16.wmf]ã

SAP

AG 2002

Unit Summary

l

An index helps you to speed up read accesses to a

table.

An index can be considered a sorted copy of the

table that is reduced to the index fields.

l

The table buffers reside locally on the application

servers.

l

Buffering can substantially increase the performance

when the records of the table are accessed.

Choosing

the correct buffering type is important.

l

The table buffers are adjusted to changes to the table

entries at fixed intervals.

l

The more frequently a table is read and the less

frequently the table contents are changed, the better it is

to buffer the table.

Peformance During Table Access Exercises

	[image: image17.png]

	Unit: Performance During Table Access

	[image: image18.png]

	At the conclusion of these exercises, you will be able to:

· Create indexes

· Maintain the buffering attributes of a table

	[image: image19.wmf]

	In their daily work, airline employees need fast access to the data in the employee administration tables. In this exercise, access to the data in these tables should be speeded up.

1-1
The combination of first and last names is often used to access the personnel data of an employee. The last name is more often known (that is, specified in the access) than the first name.

Create an index that supports this access. Make sure that the index is created in the database.

1-2
To set up a flight crew, you have to assign employees (pilots and stewards) to flights. Create a table in which the employees involved and their functions can be entered for each flight.

A table with the corresponding structure already exists in the system. Copy this table SFLCREW to table ZFLCREW##. Replace the existing data element for the employee number with your own data element.

Do not forget to activate table ZFLCREW##.

1-3
Reconsider the settings you made for buffering tables ZDEPMENT## and ZFLCREW##. Keep the following information for using these tables in mind:

The carriers have between 10 and 30 departments. Only a few carriers (maximum 3) are administered in the tables. The data about the crews of completed flights are rolled out to an archive file every three months. Table ZFLCREW## therefore has relatively few entries (at most 5,000 per carrier).

Tables ZDEPMENT## and ZFLCREW## are accessed very frequently. Data records are read repeatedly from these tables.

Administrative employees of only one airline work on one application server. The data about the flight crew is only of interest within the airline. Since the airlines share some services, administrative employees of an airline, often have to access departmental data of other airlines.

	[image: image20.wmf]

	Start Program BC430_CHECK in Transaction SE38. This program checks whether your solutions are correct and fills the new table ZFLCREW## with sample data needed for later exercises.

If you do the supplementary exercise, only start this program after completing the supplementary exercise.

1-4
Supplementary Exercise: Using an index on the areas might result in a gain in performance when accessing the employee data, for example, if all pilots are frequently selected.

In performance measurements on different database systems it was found there is only a gain in performance for the ADABAS and SQL Server database systems. Create an index and make sure that it is only created on the ADABAS and SQL Server database systems.

Performance During Table Access Solutions

	[image: image21.png]

	Unit: Performance During Table Access

1-1
The personnel data of the employees is managed in Table ZEMPLOY##. Create an index for this table. It has to contain fields Client, Lastname and Firstname. Since the last name is usually specified and is much more selective than the first name, the last name must be in its index. The order of the fields is then Client, Lastname, and then Firstname.

To create the index:

1)
In display mode, go to the maintenance screen of table ZEMPLOY## and choose Indexes.

2)
In the next dialog box, confirm that you want to create an index.

3)
In the following dialog box, enter a three-place index ID and choose Continue.

4)
The maintenance screen for the index appears. Enter a Short description.

5)
Choose Table fields. A list of all the fields in the table appears. Select fields Client, Lastname, and Firstname and choose Copy.

6)
The fields are copied from the dialog box to the index in that order. If field Firstname is before field Lastname, you have to change the order of the fields. Do this by placing the cursor on the line with field Firstname and choosing Cut. Now place the cursor on the first free line after field Lastname and choose Paste.

7)
The index is certainly not a unique index since there can be employees with the same first and last names. There is no reason to create the index only in certain database systems. You should therefore leave the standard settings Non-unique index and Index in all database systems.

8)
Activate the index. The index is automatically created in the database.

1-2
To copy table SFLCREW:

1)
In the initial screen of the ABAP Dictionary, enter SFLCREW in field Database table. Choose Copy.

2)
In the next dialog box, enter the name ZFLCREW## in field to table and choose Continue.

3)
In change mode, go to the table maintenance screen and replace data element SEMP_NUM with the data element you created for the employee number.

4)
Activate the table.

1-3
You can maintain the buffering settings for the specified tables in their technical settings. To do so, go to the maintenance screen for the table in display mode and choose Technical settings. The desired maintenance screen appears and you can switch to change mode here.

Since the contents of table ZDEPMENT## are rarely changed but frequently read, it is advisable to buffer the table. Choose Buffering switched on. Since there are no restrictions on the access and the table is small, you should select full buffering. Select Fully buffered.

Activate the technical settings of table ZDEPMENT##.

The data of table ZFLCREW## are often read repeatedly. Accesses that change the contents are rare. You should therefore buffer the table. Select Buffering switched on. Usually only the data of one airline is needed on an application server. You should therefore buffer the table generically with the generic key Client and Carrier. Select Generic buffering and choose 2 as the number of generic key fields.

Activate the technical settings of table ZFLCREW##.

1-4
If you do as specified in 3.1, the system displays the index you created in a dialog box. In this dialog box, choose Create. Include fields Client, Carrier, and Area in the index. This is not a unique index either.

To create the index only in the Adabas and SQL Server database systems:

1)
Choose For selected database systems.

2)
Then select the arrow symbol in this line. Select Selection list. Using the F4 help, select the identifiers for the Adabas (ADA) and SQL Server (MSS) database systems in the list.

3)
Choose Continue.

4)
Activate the index.

The index is only created in the database if your training system is running on one of the selected database systems.

© SAP AG
TAW12
4-16

