
0 [image: image1.wmf]ã

SAP

AG 2002

l

Dynamic attributes

l

Data reference variables

l

Field symbols

l

Runtime Type Identification (RTTI)

Contents:

Dynamic Programming

[image: image2.wmf]ã

SAP

AG 2002

l

Use dynamic attributes in suitable ABAP

statements

l

Use data objects generated at runtime

l

Ascertain the attributes of data objects at runtime

At the conclusion of this unit, you will be able to:

Dynamic Programming: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Field Symbols in Detail

Field Symbols in Detail

Dynamic Calls

Dynamic Calls

Data References

Data References

Dynamic Programming (1)

Ascertaining Data Attributes Dynamically

Ascertaining Data Attributes Dynamically

[image: image4.wmf]ã

SAP

AG 2002

Field Symbols

DATA

int

TYPE i VALUE 15.

FIELD

-

SYMBOLS <

fs

_

int

> TYPE i.

ASSIGN

int

TO <

fs

_

int

>.

WRITE: /

int

, <

fs

_

int

>.

<

fs

_

int

> = 17.

WRITE: /

int

, <

fs

_

int

>.

UNASSIGN <

fs

_

int

>.

IF

<

fs

_

int

> IS ASSIGNED

.

WRITE: /

int

, <

fs

_

int

>.

ELSE.

WRITE: /

'fieldsymbol

not

assigned'

(

fna

).

ENDIF.

15

fs

_

int

int

15

fs

_

int

int

FIELD

-

SYMBOLS <fs> TYPE|LIKE

.

.. |TYPE A

NY}.

ASSIGN ...

dataobject

TO <fs>.

UNASSIGN <fs>.

...

<fs> IS ASSIGNED ...

Generic or

complete type

specification

17

fs

_

int

int

17

fs

_

int

int

· You declare field symbols using the FIELD-SYMBOLS <fs> statement. Note that the parentheses (<>) are part of the syntax.

· Field symbols allow you to access an assigned data object - that is, all the accesses that you make to the field symbol are made to the data object assigned to it. Field symbols are similar to dereferenced pointers. Thus, you can only access the content of the data object to which the field symbol points. (That is, field symbols use value semantics).

· You use the ASSIGN statement to assign a data object to the field symbol <fs>. If the field symbol is generically typed (TYPE ANY), it adopts the type of the data object.
By specifying a type for the field symbol, you can ensure that only compatible objects are assigned to it.
Example:
DATA: date TYPE d VALUE '19991231', time TYPE t.
FIELD-SYMBOLS: <fs_date> TYPE d, <fs_time> TYPE t.
ASSIGN: date TO <fs_date>, time TO <fs_time>.
<fs_time> = <fs_date>. returns a syntax error.
Conversely, using the following construction would deliver a runtime error:FIELD-SYMBOLS: <fs_date> TYPE ANY, <fs_time> TYPE ANY.

· Use the expression <fs> IS ASSIGNED to find out whether the field symbol <fs> is assigned to a field.

· The statement UNASSIGN <fs>. sets the field symbol <fs> so that it points to nothing. The logical expression <fs> IS ASSIGNED is then false.

[image: image5.wmf]ã

SAP

AG 2002

The CASTING Addition

TYPES: BEGIN OF

st

_date,

year

(4) TYPE n,

month

(2) TYPE n,

day

(2) TYPE n,

END OF

st

_date.

*

option

1:

implicit

FIELD

-

SYMBOLS <

fs

> TYPE

st

_date.

ASSIGN

sy

-

datum

TO <

fs

>

CASTING

.

*

access after casting

:

WRITE: / <

fs

>

-

year

, <

fs

>

-

month

, <

fs

>

-

day

.

*

option

2:

explicit

FIELD

-

SYMBOLS <

fs

> TYPE ANY.

ASSIGN

sy

-

datum

TO <

fs

>

CASTING TYPE

st

_date.

...

20011221

fs

...

sy

date

...

...

...

ASSIGN ...

dataobject

TO <

fs

> CASTING [TYPE type|...]

.

Inhalt des zugewiesenen

Datenobjekts wird so

interpretiert, als ob er den

implizit

bzw

. explizit

angegeben Typ hätte

The content of the assigned

data object is interpreted as

if it had the implicit or

explicit type specified

· If you use the CASTING addition when you assign a data object to a field symbol that has a different type, you can remove the restrictions of having to use the data object's original type. The access is then interpreted as though the data object had the data type of the field symbol.

· If you use the CASTING TYPE <type> addition when you assign a data object to a field symbol that has a different type, you can access the data object using the field symbol as if the object had the type <type>.

· In the above example, note that the system field sy-datum is an elementary character-type component of length 8.

· You can also use type casting dynamically when you assign a data object to a field symbol.
For example:
PARAMETERS tabname TYPE dd02l-tabname.
DATA:
 dummy TYPE i,
 line(65535) TYPE c.
FIELD-SYMBOLS <fs_wa> TYPE ANY.

ASSIGN line TO <fs_wa> CASTING TYPE (tabname).
You can now access line through <fs_wa> as if this elementary data object had the same type as the line type of the transparent table passed using tabname. (You define the dummy data object only to ensure that line has the correct alignment).

[image: image6.wmf]ã

SAP

AG 2002

Field Symbols in Detail

Field Symbols in Detail

Dynamic Calls

Dynamic Calls

Dynamic Programming (2)

Data References

Data References

Ascertaining Data Attributes Dynamically

Ascertaining Data Attributes Dynamically

[image: image7.wmf]ã

SAP

AG 2002

Using Dynamic Attributes in Statements

l

Replacing a literal with a variable:

CALL TRANSACTION 'T_CODE'.

* dynamic:

data_object = 'T_CODE'.

CALL TRANSACTION data_object.

SUBMIT

report

_

name

.

*

dynamic

:

data

_

object

= 'REPORT_NAME'.

SUBMIT (

data

_

object

).

SET PF

-

STATUS 'STATUS_NAME' EXCLUDING 'FC1' 'FC2'

*

dynamic

:

* ...

fill

internal

_table

with function codes

...

SET PF

-

STATUS 'STATUS_NAME' EXCLUDING

internal

_table .

l

Replacing a list with an internal table:

l

Replacing an identifier with a variable in parentheses (

without

spaces):

· In many ABAP statements, you can pass attributes dynamically. The syntax for doing this differs, depending on the statement you use:

· If you pass the attribute as a literal in the static form of the statement, you can replace the literal with a variable. If you pass the attribute as an identifier in the static form of the statement, you can replace the identifier with a variable in parentheses. Make sure there are no spaces between either parenthesis and the variable. If the attribute is a list, you can replace it with an internal table.

· Note: you must use upper case when filling data objects with literals.

· For more information on which of these three options you can use with a specific ABAP statement - if any - refer to the ABAP documentation for that statement.

· In Open SQL statements, you can also specify the logical conditions of the WHERE clause dynamically at runtime, by entering the ABAP source code in a variable. In the FROM clause of the SELECT statement, you can specify either individual table names or a dynamic JOIN expression using a variable. Similarly, you can program the GROUP-BY and HAVING clauses in SELECT statements. For more information, refer to the keyword documentation.

[image: image8.wmf]ã

SAP

AG 2002

Calling Methods Dynamically

TYPE

-

POOLS

abap

.

DATA: ptab TYPE

abap_parmbind_

tab

,

etab

TYPE

abap_

excpbind

_

tab

.

...

data

_

object

= 'METHOD_NAME'.

*

Fill

ptab and

etab

...

CALL METHOD

ref

-

>(

data

_

object

)

PARAMETER

-

TABLE ptab

EXCEPTION

-

TABLE

etab

.

name

kind

value

ptab

name

value

etab

TYPE

-

POOL

abap

.

TYPES

abap

_

parmbind

_tab ...

TYPES

abap

_excpbind_tab ...

...

Internal

table types

Reference to the

actual parameter

How variable

is passed

(optional)

Name of formal

parameter

Name of

exception

Value for

sy

-

subrc

· You can call instance and static methods dynamically using parentheses in the syntax, as is normal in ABAP. Use the PARAMETER-TABLE and EXCEPTION-TABLE additions of the CALL METHOD statement to pass the actual parameters dynamically.

· The parameter table must have the attributes of the ABAP_PARMBIND_TAB table type. The table has three columns: NAME (for the name of the formal parameter); KIND for the way the parameter is passed (exporting, importing, changing, or receiving); VALUE with the type REF TO data (for the value of the actual parameter).

· The way the parameter is passed is specified for each formal parameter in the declaration of the called method. Thus, the content of the KIND column can be initial.

· For the value of the actual parameter, the VALUE reference of the line in the table must point to the data object containing that value. You can use the GET REFERENCE statement to achieve this.

· The exception table must have the attributes of the ABAP_EXCPBIND_TAB table type. This table has two columns: NAME for the name of the exception; VALUE for the value to be assigned to sy-subrc. VALUE must be of type i.

[image: image9.wmf]ã

SAP AG 2003

Creating Objects Dynamically

l

You can enter the class name with CREATE OBJECT both

statically and dynamically

n

Subclasses possible with reference to class

n

Classes carrying out the implementation possible with

references to interfaces

CREATE OBJECT <

reference

> TYPE <

classname

> [EXPORTING...]

[EXCEPTIONS ...].

CREATE OBJECT <

reference

> TYPE (<

classname

_

string>) ...

DATA:

doc

TYPE REF TO

if

_

document

,

class

_

name

(20) TYPE c VALUE

´CL_TEXT_DOC

´.

CREATE OBJECT

doc

TYPE

cl

_

html

_

doc

.

CREATE OBJECT

doc

TYPE (

class

_

name

).

· You can enter the class of the instance to be created either statically, using the class name, or dynamically, using a variable containing the class name. Once the statement has been executed (successfully), a (runtime) instance of the class entered will have been created, and the reference variable entered points to this instance.

· There are two possible situations:
- For a reference variable referring to a class, enter the name of a subclass (or of the class itself).
- For a reference variable referring to an interface, enter the name of the class carrying out the implementation.

· A check can be carried out in the static form ... TYPE <classname>… to see if one of the two situations above has occurred. If it has not, a syntax error occurs.

· In the dynamic form ...TYPE (<classname_string>). the classname_string field provides the class name. A check can be carried out at runtime to ensure that the reference variable type is compatible with the class entered. If this is not the case, a runtime error occurs.

[image: image10.wmf]ã

SAP

AG 2002

Dynamic Programming (3)

Field Symbols in Detail

Field Symbols in Detail

Dynamic Calls

Dynamic Calls

Data References

Data References

Ascertaining Data Attributes Dynamically

Ascertaining Data Attributes Dynamically

[image: image11.wmf]ã

SAP

AG 2002

Data Reference Variables

DATA:

ref

TYPE REF TO i,

do TYPE i VALUE 15.

GET REFERENCE OF do INTO ref.

do

ref

do

ref

15

15

Get a reference to a data

object

TYPES

reftype

{

TYPE REF TO type_name

|

LIKE REF TO do_name |

TYPE REF TO data

}.

DATA ref

{

TYPE REF TO type_name

|

LIKE REF TO do_name |

TYPE REF TO data

}.

GET REFERENCE OF

dataobject

INTO ref

.

Generic type

assignment

Any completely

specified type

· Data reference variables contain data references - that is, pointers to data objects. You use the TYPES reftype TYPE REF TO type_name statement to define a reference type to a data object, where type_name is any completely specified type. You can also use the generic variant TYPE REF TO data here. You define the data reference variable itself using the DATA statement. This reference variable is a data object that can contain any data object (TYPE REF TO data) or a data object of the specified type.

· You work with data references using references. That is, when you access a data reference variable the data reference itself is accessed, so that changes are made to the addresses.

· Data references are handled in ABAP like any data object with an elementary data type. This means that a reference variable can be defined not only as a single field, but also as the smallest indivisible unit in a complex data object, such as a structure or an internal table.

· After it has been defined, the data reference variable is initial - that is, it contains an empty pointer. For a data reference variable to contain a reference that points to a data object, you must use this variable to get a reference to a data object that has already been declared (GET REFERENCE OF dataobject INTO ref). You can also assign an existing data reference from another data reference variable or generate a data object dynamically using it. (This will be discussed in more detail later.)

[image: image12.wmf]ã

SAP

AG 2002

Example: Using Data Reference Variables in

Dynamic Method Calls

TYPE

-

POOLS abap.

DATA: ptab TYPE abap_parmbind_

tab

,

wa

_ptab LIKE LINE OF ptab,

meth

TYPE

string

,

ref

TYPE REF TO

data

,

gd_

make

TYPE

string

.

...

GET REFERENCE OF gd_

make

INTO

ref

.

wa

_ptab

-

value

=

ref

.

wa

_ptab

-

name

= 'EX_MAKE'.

INSERT

wa

_ptab INTO TABLE ptab.

meth

= 'GET_MAKE'.

CALL METHOD r_

truck

-

>(

meth

)

PARAMETER

-

TABLE ptab.

WRITE gd_

make

.

CLASS lcl_

vehicle

DEFINITION.

...

METHODS

get

_

make

EXPORTING ex_

make

TYPE

string

.

...

ENDCLASS.

CLASS lcl_

vehicle

IMPLEMENTATION.

...

METHOD

get

_

make

.

ex_

make

=

make

.

ENDMETHOD.

...

ENDCLASS.

name

kind

value

ptab

EX_MAKE

gd_

make

VOLVO

After the dynamic method call:

· In this example, the get_make method of the lcl_vehicle class is called dynamically. It has only one export parameter and no exceptions.

· First we define a parameter table ptab with the global table type abap_parmbind_tab from the type group abap. The associated work area is called wa_ptab.

· We fill the work area wa_ptab with the associated values. We assign the name of the export parameter EX_MAKE to the component name. The component value contains the reference to the corresponding actual parameter gd_make. We also define the data reference variable ref (TYPE REF TO data) and fill the corresponding reference using GET REFERENCE. The kind component of the work area need not be filled.

· We then insert this work area in the parameter table ptab using the INSERT statement. Finally we assign the name of the calling method to the data object meth. We then call the method using the syntax already shown.

· After the method call, the actual parameter gd_make contains the passed value.

[image: image13.wmf]ã

SAP

AG 2002

Generating Data Objects at Runtime

DATA

ref

{ TYPE REF TO

type

_

name

| LIKE REF TO do_

name

}.

CREATE DATA ref.

PARAMETERS

pa

_

tab

TYPE dd021

-

tabname.

DATA

ref

_

itab

TYPE REF TO

data

.

CREATE DATA

ref

_

itab

TYPE STANDARD TABLE

OF (

pa

_

tab

)

WITH DEFAULT KEY.

DATA

ref

TYPE REF TO

data

.

CREATE DATA

ref

TYPE

{ type

_

name | itab_type_def }.

ref

_

itab

Standard table with standard key

and line type appropriate for the

content of the data object pa_tab

�

‚

You can also

assign a type

dynamically

· All data objects declared in the declaration part of a program using the appropriate statement (such as DATA) are generated statically and can be addressed from when the first event block is executed. However, you can also use data reference variables to generate any data object you want dynamically while the program is executing. You can use either of the above variants to do this.

· Both of these variants generate a data object in the internal session of the current ABAP program. The data reference in the data reference variable ref points to this object after the statement has been executed. This dynamically generated data object does not have its own name; it can only be addressed using the data reference variable. If you want to access the content of the data object, you need to dereference the data reference first.

· In the second variant, you specify the data type of the data object you want to generate after the TYPE addition of the CREATE-DATA statement. In this case, you can specify the data type dynamically: CREATE DATA ref TYPE (dataobject). You cannot do this in other ABAP statements. dataobject is the name of a field containing the name of the relevant data type.

· When you generate internal tables using the second variant, you must specify the table kind statically. You can, however, specify the line type either statically or dynamically. You can also specify the key components either statically or dynamically (as the contents of a table containing the component names). You can also specify the initial number of table lines statically or dynamically (as the contents of a variable).

[image: image14.wmf]ã

SAP

AG 2002

Dereferencing Data References

PARAMETERS

pa

_

tab

TYPE dd021

-

tabname.

DATA

ref

_

itab

TYPE REF TO

data

.

FIELD

-

SYMBOLS <

fs

_

itab

> TYPE ANY TABLE.

CREATE DATA

ref

_

itab

TYPE STANDARD TABLE

OF (

pa

_

tab

)

WITH DEFAULT KEY.

ASSIGN

ref

_

itab

-

>* TO <

fs

_

itab

>.

SELECT * FROM (

pa

_

tab

) INTO TABLE <

fs

_

itab

>.

ref

_

itab

ASSIGN

ref

-

>* TO <

fs

> [CASTING ...].

fs

_

itab

You can then address

the contents of the

internal table using the

field symbol

· To access the contents of the data object, you need to dereference the data reference first. To access data objects generated with data reference variables with generic types (TYPE REF TO data), you can use field symbols: ASSIGN ref->* TO <fs>. This statement assigns the relevant data object (the one to which the data reference in the reference variable ref points) to the field symbol <fs>. If the data object i s assigned successfully, sy-subrc is set to 0. If the field symbol is fully generically typed, it adopts the type of the data object. If the field symbol is partially or completely typed, the system checks the compatibility of the data types. You can also cast to the assigned data object.

· If the data reference in ref is initial or invalid, it cannot be dereferenced. In that case the field symbol remains unchanged and sy-subrc is set to 4.

· If the data reference variable ref is completely typed (that is, not generically), you can use the prefix ref-> to access the contents of the data object to which ref is pointing. You can write this expression in any operand position. If the data reference is typed, you can also address the components of the referenced data object directly and use them in any operand position.

DATA ref TYPE REF TO sflight.
CREATE DATA ref.
ref->fldate = ref->fldate + 5.
WRITE: / ref->seatsmax.

[image: image15.wmf]ã

SAP

AG 2002

Example: Generating Data Objects at Runtime

PARAMETERS

pa

_

dbtab

TYPE dd02l

-

tabname DEFAULT 'SFLIGHT'.

DATA d_

ref

TYPE REF TO

data

.

FIELD

-

SYMBOLS: <

fs

_

wa

> TYPE ANY, <

fs

_

comp

> TYPE ANY.

START

-

OF

-

SELECTION.

CREATE DATA d_

ref

TYPE (

pa

_

dbtab

).

ASSIGN d_

ref

-

>* TO <

fs

_

wa

>.

SELECT * FROM (

pa

_

dbtab

) INTO <

fs

_

wa

>.

DO.

ASSIGN COMPONENT

sy

-

index

OF STRUCTURE <

fs

_

wa

> TO <

fs

_

comp

>.

IF

sy

-

subrc NE 0.

SKIP.

EXIT.

ENDIF.

WRITE <

fs

_

comp

>.

ENDDO.

ENDSELECT.

· This example displays the content of a transparent table. You can make the FROM clause of the SELECT statement dynamic. For the INTO clause, you will need a data object that has a line type compatible with that of the table being displayed. Since the name - and thus the line type of the table is not known until runtime, you should not create the data object until then.

· Unlike conventional data objects, you can specify the type of a data object created at runtime dynamically. The TYPE addition of the CREATE DATA statement contains the name of the table, so that the system creates the appropriate structure.

· The statement ASSIGN d_ref->* TO <fs_wa> assigns the data object to the field symbol. The data type of the table is inherited by the field symbol, so type casting is no longer necessary.

· You can now write each data record from the SELECT statement into the compatibly-typed data object using the field symbol <fs_wa>.

· If you knew the component names, you could display the fields directly using WRITE <fs_wa>-... .
However, you will not normally know the names of the components, nor how many of them there are. For this reason, you must display the components using the ASSIGN-COMPONENT variant: The components of the structure <fs_wa are assigned one-by-one to the field symbol <fs_comp> and then displayed. When the loop runs out of components, the program reads the next data record.

[image: image16.wmf]ã

SAP

AG 2002

Field Symbols in Detail

Field Symbols in Detail

Dynamic Calls

Dynamic Calls

Ascertaining Data Attributes Dynamically

Ascertaining Data Attributes Dynamically

Dynamic Programming (4)

Data References

Data References

[image: image17.wmf]ã

SAP

AG 2002

Ascertaining Internal Table Attributes

DATA: no_of_lines TYPE i,

initial_lines TYPE i,

table_kind TYPE c.

DESCRIBE TABLE

itab

LINES

no_of_lines

OCCURS

initial_lines

KIND

table_kind.

* other variant:

no_of_lines =

lines(

itab

)

.

TYPE

-

POOL: sydes.

•

sydes_kind

-

undefined

•

sydes_kind

-

standard

•

sydes_kind

-

sorted

•

sydes_kind

-

hashed

table_

kind

Number of lines in

the internal table

Number of lines

reserved when table

was first created

Table kind

Constants used

to evaluate the

return value

· The DESCRIBE TABLE statement allows you to obtain the following information about an internal table:

· The number of lines:
After LINES, you must enter a type i variable (here no_of_lines)

· The number of table lines initially reserved:After OCCURS, you must enter a type i variable (here: initial_lines)

· The table kind:
After KIND, you must enter a type c variable. The runtime system fills the variable with a constant defined in the type group SYDES - SYDES_KIND-UNDEFINED, SYDES_KIND-STANDARD, SYDES_KIND-SORTED, or SYDES_KIND-HASHED.

· Since SAP R/3 Basis Release 6.10, there is also a built-in function, lines.
· Note:
You can use the information about the number of lines in an internal table to query at runtime whether an internal table has any entries in it at all. Alternatively, use the IS INITIAL query. The generically-typed interface parameters of subroutines, function modules, and methods can use the information on the table kind.

[image: image18.wmf]ã

SAP

AG 2002

Dynamic Type Descriptions for RTTI Classes

Hierarchy of description classes:

CL_ABAP_TYPEDESCR

CL_ABAP_TYPEDESCR

CL_ABAP_

OBJECT

DESCR

CL_ABAP_

OBJECT

DESCR

CL_ABAP_

COMPLEX

DESCR

CL_ABAP_

COMPLEX

DESCR

CL_ABAP_

DATADESCR

CL_ABAP_

DATADESCR

CL_ABAP_

CLASS

DESCR

CL_ABAP_

CLASS

DESCR

CL_ABAP_ELEMDESCR

CL_ABAP_ELEMDESCR

CL_ABAP_

TABLE

DESCR

CL_ABAP_

TABLE

DESCR

CL_ABAP_

INTF

DESCR

CL_ABAP_

INTF

DESCR

CL_ABAP_

REF

DESCR

CL_ABAP_

REF

DESCR

CL_ABAP_

STRUCT

DESCR

CL_ABAP_

STRUCT

DESCR

l

Pass the data object to the

static method

DESCRIBE_BY_DATA of the

class CL_ABAP_TYPEDESCR

l

Get the reference to the

appropriate description object

l

Evaluate the public attributes

of this object

Ascertaining the type attributes of a

data object at runtime:

Rules:

· Since the introduction of ABAP Objects, there is now a system called the RTTI concept (Run Time Type Information) that you can use to find out type attributes at runtime. It is based on system classes. The concept includes all ABAP types, and so covers all of the functions of the statements DESCRIBE FIELD and DESCRIBE TABLE.
· There is a description class for each type with special attributes for special type attributes. The class hierarchy of the description classes corresponds to the hierarchy of the types in the ABAP type system. In addition, the description classes for complex types, references, classes, and interfaces have special methods used to specify references to sub-types. Using these methods, you can navigate through a compound type to all its sub-types.

· To obtain a reference to a description object of a type, you must use the static methods of the class CL_ABAP_TYPEDESCR or the navigation methods of the special description class. The description objects are then created from one of the subclasses. At runtime, exactly one description object exists for each type. The attributes of the description object contain information on the attributes of the type.

[image: image19.wmf]ã

SAP

AG 2002

Declaring Types Dynamically: Example

...

DATA:

descr

ref TYPE REF TO cl

abap

_structdescr,

wa_comp TYPE

abap

_compdescr.

...

START

-

OF

-

SELECTION.

...

* get reference to type descripion object by widening cast:

descr

ref ?= cl

abap

_typedescr=>describe_by_data(<fs_wa>).

...

TOP

-

OF

-

PAGE.

LOOP AT

descr

_ref

-

>components INTO wa_comp.

WRITE wa_comp

-

name.

ENDLOOP.

· We can now enhance the example of dynamic type declarations so that the system also displays the column names of the transparent table in the list.

· Since we need the attributes of a structure, we first define a reference to the appropriate description class. Instances of this class possess a COMPONENTS attribute, which you use to describe the individual components of the relevant structure. This attribute is an internal table. Therefore you also need to define a work area with a compatible line type.

· The (functional) method call returns the reference to the description instance of the structure. (The system creates the structure dynamically, which is why it is accessed through a field symbol).
Only the abstract class CL_ABAP_TYPEDESCR contains the method DESCRIBE_BY_DATA. Its RETURNING parameter is typed as a reference to this superclass. However, since the actual parameter descr_ref has the type of the subclass CL_ABAP_STRUCTDESCR, we need to assign the object using a (widening) cast.

· You can then access the attributes of the description instance in any form. In this example, the component names are displayed as the column headers. (We have omitted the formatting options for the sake of clarity.)

· For more information and syntax examples, refer to the online documentation, either under the keyword RTTI or the class CL_ABAP_TYPEDESCR.

[image: image20.wmf]ã

SAP

AG 2002

l

Use dynamic attributes in suitable ABAP

statements

l

Use data objects generated at runtime

l

Ascertain the attributes of data objects at runtime

You are now able to:

Dynamic Programming: Unit Summary

Exercise 1 – Optional

	[image: image21.png]

	Unit:
Dynamic Programming

Topic: Casting Types

	[image: image22.png]

	At the conclusion of these exercises, you will be able to:

· Use field symbols to cast types

· Perform calculations on dates

	[image: image23.wmf]
	Change your program so that the default value for the key date is calculated differently. It should be the first day of the following month.

	[image: image24.jpg]

	Program:

ZBC401_##_CASTING
Template:
SAPBC401_TABS_PROCESS_DATA
Model solution:
SAPBC401_DYNS_CASTING

1-1
Copy your solution to the last exercise from the unit Using Internal Tables ZBC401_##_PROCESS_DATA or the corresponding model solution SAPBC401_TABS_PROCESS_DATA and give it the new name ZBC401_##_CASTING.

1-2
Define a structure type (we suggest the name: st_date) with three components: Year, month, and day. Assign an appropriate type to each component.
Define a field symbol based on this type (suggested name: <fs_date>).

1-3
In the LOAD-OF-PROGRAM event block:
Copy today’s date to the input parameter pa_date.
Assign the input parameter to the field symbol.
Now fill the input parameter with the first day of the next month by accessing the pseudo-components for the year, month, and day, using the field symbol.

Screen Exercise 2

	[image: image25.png]

	Unit:
Dynamic Programming

Topic:
Dynamic Open SQL Statements and Generating Data Objects at Runtime

	[image: image26.png]

	At the conclusion of these exercises, you will be able to:

· Generate data objects dynamically

· Program dynamic SQL statements

	[image: image27.wmf]
	Develop an ABAP program that can be used as an ad hoc data browser. You should be able to access only the table name on the selection screen. Delegate filtering by field content and similar functions to an SAP Grid Control instance, which you should also use to display the data.
The purpose of this program is to make you more familiar with dynamic programming techniques. (There is already a Data Browser, installed as a standard tool in the ABAP Workbench.)

	[image: image28.jpg]

	Program:

ZBC401_##_CREATE_DATA_SQL
Template:
SAPBC401_DYNT_CREATE_DATA_SQL
Model solution:
SAPBC401_DYNS_CREATE_DATA_SQL

2-1
Copy your program, SAPBC401_DYNT_CREATE_DATA_SQL, giving it the name ZBC401_##_CREATE_DATA_SQL.

2-2
Get to know the source code and runtime behavior of this program.
Then implement the following concept: At runtime, the program should generate an internal table whose line type is compatible with the selected transparent table. The former should then be filled with the complete contents of the latter using a dynamic SQL statement. The internal table filled in this way should then be passed to a SAP Grid Control instance.

2-3
Define a reference for the internal table that will be generated (we suggest the name ref_itab).

2-4
At program runtime, generate the internal table. At this time, it is known which line type must be used.
The table must be a standard table with a non-unique standard key.

2-5
Assign a generically-typed field symbol to the generated internal table (suggested name: <fs_itab>), so that its contents can be accessed.

2-6
Before calling the screen, insert an Open SQL statement that copies the complete contents of the selected transparent table into the internal table using an array fetch.
If an error occurs, make sure the program terminates.

2-7
Generate a SAP Grid Control instance within the PBO module that you have created, INIT_CONTROLS_0100. Again, if an error occurs, make sure the program terminates.

	[image: image29.wmf]
	The relevant class is called CL_GUI_ALV_GRID.

2-8
Pass the internal table filled in this way to this SAP Grid Control instance.
If an error occurs, make sure the program terminates.

	[image: image30.wmf]
	The relevant method is called SET_TABLE_FOR_FIRST_DISPLAY.
You need only pass values to two parameters: The line type to I_STRUCTURE_NAME and the name of the internal table to IT_OUTTAB.

Solution 1 - Optional

	[image: image31.png]

	Unit:
Dynamic Programming

Topic:
Casting Types

REPORT sapbc401_dyns_casting.
TYPE-POOLS col.
TYPES:
 BEGIN OF st_flight_c,
 ...

 END OF st_flight_c,
 BEGIN OF st_flight,
 ...

 END OF st_flight,
 BEGIN OF st_date,
 year(4) TYPE n,
 month(2) TYPE n,
 day(2) TYPE n,
 END OF st_date.
CONSTANTS c_number TYPE i VALUE 30.
DATA:
 datastring TYPE string,
 set_string TYPE string,
 wa_flight_c TYPE st_flight_c,
 wa_flight TYPE st_flight.
DATA:
 it_sets TYPE STANDARD TABLE OF string
 WITH NON-UNIQUE DEFAULT KEY
 INITIAL SIZE c_number,
 it_flights TYPE SORTED TABLE OF st_flight
 WITH UNIQUE KEY fldate carrid connid
 INITIAL SIZE c_number,
 it_doubles TYPE SORTED TABLE OF st_flight
 WITH NON-UNIQUE KEY fldate carrid connid
 INITIAL SIZE c_number,
 it_col_flights TYPE bc401_t_flights_color,
 it_col_doubles LIKE it_col_flights,
 wa_col_flight LIKE LINE OF it_col_flights.
FIELD-SYMBOLS <fs_date> TYPE st_date.
PARAMETERS:
 pa_date LIKE sy-datum,
 pa_alv AS CHECKBOX DEFAULT 'X'.
LOAD-OF-PROGRAM.
 pa_date = sy-datum.
 ASSIGN pa_date TO <fs_date> CASTING.
 <fs_date>-day = '01'.
 IF <fs_date>-month < 12.
 <fs_date>-month = <fs_date>-month + 1.
 ELSE.
 <fs_date>-month = '01'.
 <fs_date>-year = <fs_date>-year + 1.
 ENDIF.
AT SELECTION-SCREEN.
 IF pa_date < sy-datum.
 MESSAGE e085(bc401). " date in the past
 ENDIF.
START-OF-SELECTION.
 ...
Solution 2

	[image: image32.png]

	Unit:
Dynamic Programming

Topic:
Dynamic Open SQL Statements and Generate Data Objects at Runtime

2-1
The copy template displays a selection screen where you can enter the name of a transparent table. It then shows a screen that displays the contents of this table.
From this screen, you can either navigate back to the selection screen or end the program.

This runtime behavior is implemented using standard ABAP programming techniques. A docking container control instance that fills the whole screen has already been generated and attached to the screen.
2
Model solution: SAPBC401_DYNS_CREATE_DATA_SQL

REPORT sapbc401_dyns_create_data_sql.

DATA:
 ok_code LIKE sy-ucomm,
 popans.

DATA:
 ref_docking TYPE REF TO cl_gui_docking_container,
 ref_alv TYPE REF TO cl_gui_alv_grid.

DATA ref_itab TYPE REF TO data.

FIELD-SYMBOLS <fs_itab> TYPE ANY TABLE.

PARAMETERS pa_tab TYPE dd02l-tabname DEFAULT 'SPFLI'.
START-OF-SELECTION.

 CREATE DATA ref_itab TYPE STANDARD TABLE OF (pa_tab)
 WITH NON-UNIQUE DEFAULT KEY.
 ASSIGN ref_itab->* TO <fs_itab>.

 SELECT * FROM (pa_tab)
 INTO TABLE <fs_itab>.
 IF sy-subrc <> 0.
 MESSAGE a000(rfw) WITH text-ndt.
 ENDIF.

 CALL SCREEN 100.

&--
*& Module clear_ok_code OUTPUT *
&--
MODULE clear_ok_code OUTPUT.
 CLEAR ok_code.
ENDMODULE. " clear_ok_code OUTPUT

&--
*& Module STATUS_0100 OUTPUT *
&--
MODULE status_0100 OUTPUT.
 SET PF-STATUS 'ST100'.
 SET TITLEBAR 'T100'.
ENDMODULE. " STATUS_0100 OUTPUT

&--
*& Module init_controls_0100 OUTPUT *
&--
MODULE init_controls_0100 OUTPUT.

 IF ref_docking IS INITIAL.

 CREATE OBJECT ref_docking
 EXPORTING
* SIDE = DOCK_AT_LEFT
 extension = 2000
 EXCEPTIONS
 OTHERS = 6
 .
 IF sy-subrc <> 0.
 MESSAGE a015(rfw).
 ENDIF.

 CREATE OBJECT ref_alv
 EXPORTING
 i_parent = ref_docking
 EXCEPTIONS
 error_cntl_create = 1
 error_cntl_init = 2
 error_cntl_link = 3
 error_dp_create = 4
 OTHERS = 5
 .
 IF sy-subrc <> 0.
 MESSAGE a000(rfw) WITH text-aer.
 ENDIF.

 CALL METHOD ref_alv->set_table_for_first_display
 EXPORTING
 i_structure_name = pa_tab
 CHANGING
 it_outtab = <fs_itab>
 EXCEPTIONS
 invalid_parameter_combination = 1
 program_error = 2
 too_many_lines = 3
 OTHERS = 4
 .
 IF sy-subrc <> 0.
 MESSAGE a033(rfw).
 ENDIF.

 ENDIF.

ENDMODULE. " init_controls_0100 OUTPUT

&--
*& Module leave_programm INPUT *
&--
MODULE leave_programm INPUT.
 CLEAR popans.
 CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'
 EXPORTING
 textline1 = text-dml
 textline2 = text-rcn
 titel = text-cnc
 cancel_display = ' '
 IMPORTING
 answer = popans.
 CASE popans.
 WHEN 'J'.
 LEAVE PROGRAM.
 WHEN 'N'.
 CLEAR ok_code.
 ENDCASE.
ENDMODULE. " leave_programm INPUT

&--
*& Module user_command_0100 *
&--
MODULE user_command_0100 INPUT.
 CASE ok_code.
 WHEN 'BACK'.
 CLEAR popans.
 CALL FUNCTION 'POPUP_TO_CONFIRM_STEP'
 EXPORTING
 textline1 = text-dml
 textline2 = text-rbk
 titel = text-bak
 cancel_display = ' '
 IMPORTING
 answer = popans.
 CASE popans.
 WHEN 'J'.
 LEAVE TO SCREEN 0.
 WHEN 'N'.

 ENDCASE.
 WHEN OTHERS.

 ENDCASE.

© SAP AG
TAW10
14-22

