
0 [image: image19.png]

[image: image2.wmf]ã

SAP

AG 2002

l

Create your own exception classes

l

Raise exceptions in a program

l

Handle exceptions

l

Pass exceptions along

At the conclusion of this unit, you will be able to:

Exception Handling: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Class

-

Based Exceptions: Overview

cx_

exception

...

...

Exception class

(either predefined

or defined by you)

...

RAISE EXCEPTION TYPE cx_

exception

[EXPORTING attr1 = ...

attr2 = ...].

...

*

Exception handling

...

ABAP runtime system

Exception raised

either in ABAP

statement or by

runtime system

ABAP program

· We use the term exception to refer to a situation that arises while an ABAP program is being executed, where there is no point in continuing to run the program in the normal way. Since SAP R/3 Basis Release 6.10, exceptions and exception handling is based on the exception classes concept. This concept includes the functions of the concepts that preceded it but also enhances (and thus replaces) them.

· Class-based exceptions are raised either using the ABAP statement RAISE EXCEPTION or by the ABAP runtime environment. For example, if the program tries to divide by zero the runtime environment raises the exception. You can, however, ascertain that this situation has arisen using a query in the ABAP program. From there, you can then raise an exception yourself.

· You can define exception classes yourself, but there is already a range of predefined exception classes in the system. In an exception situation, an exception is represented by an exception object - that is, an instance of an exception class. The attributes of each exception object can contain information about the error situation.

· The use of class-based exceptions is not limited to object-oriented contexts. Class-based exceptions can be raised and handled in all ABAP processing blocks. In particular, the catchable runtime errors used until now can be handled as class-based exceptions.

· If a class-based exception occurs, the system interrupts the normal program flow and tries to navigate to a suitable handler. If it cannot find a handler, a runtime error occurs.

[image: image4.wmf]ã

SAP

AG 2002

Exception Classes: The Inheritance Hierarchy

cx_

static

_check

cx_

dynamic

_check

cx_no_check

cx_

sy

_

move

_

cast

_

error

cx_

sy

_

arithmetic

_

error

cx_

sy

_

arithmetic

_

overflow

textid

kernel

_

errid

...

get

_text

get

_

source

_

position

cx_

root

· All exception classes are derived from the one of the classes CX_NO_CHECK, CX_DYNAMIC_CHECK, or CX_STATIC_CHECK, themselves derived from the common superclass CX_ROOT. The way in which exception classes are assigned to one of these three paths in the hierarchy defines how the associated exceptions are passed along. (This will be discussed in more detail later in this unit.)

· All exception classes begin with the prefix CX_. In general, they are defined globally in the ABAP Workbench Class Builder. However you can also define local exception classes.

· The root class CX_ROOT contains two predefined methods that are inherited by the other classes. The GET_SOURCE_POSITION method returns the program name, include name (if relevant), and line number in the source code where the exception occurred. The GET_TEXT method returns an exception text of a class in the form of a string. You can assign several texts to each class. You can then specify which text is to used when an exception is raised by passing an identifier to the IMPORTING parameter TEXTID of the instance constructor.
· All exception classes inherit the KERNEL_ERRID attribute from CX_ROOT. This attribute contains the name of the appropriate runtime error if the exception was raised by the runtime environment - such as COMPUTE_INT_ZERODIVIDE if the program tries to divide by zero. If the exception is not listed, a runtime error occurs.

[image: image5.wmf]ã

SAP

AG 2002

TRY.

...

CATCH cx_...

cx_...

...

[INTO r_exc1].

...

C

ATCH cx_...

... [INTO r_exc2].

...

CLEANUP

.

...

ENDTRY.

Handling Exceptions

Code whose

exceptions (if

any) are to be

handled

Handlers for the

specified

exception classes

and

their

subclasses

Block for "tidying up"

if there is no handler

available in the TRY

-

ENDTRY structure

Handlers for the

specified exception

classes

and

their

subclasses

· Like all ABAP control structures, TRY-ENDTRY structures can be nested. Thus the TRY block, CATCH- blocks, and the CLEANUP block in particular can contain complete TRY-ENDTRY structures themselves.

· The TRY block contains the application code that is to handle the exceptions. If an exception occurs in the TRY block the system searches first for a CATCH statement (which will handle the exception) in the same TRY-ENDTRY structure and then step by step outwards in all the enclosing TRY-ENDTRY structures. If it finds one, it navigates to this handler. If it cannot find a handler but the TRY-ENDTRY structure is in a procedure, it then tries to pass the exception along to the calling program. (This will be discussed in more detail later.)

· A CATCH block contains the exception handler that is executed if a specified exception has occurred in the TRY block in the same TRY-ENDTRY structure. After the CATCH statement, you can specify as many exception classes as you wish. In this way, you define an exception handler for all these exception classes and their subclasses. After an exception occurs, the system searches through the listed exception handlers in the order specified. It then executes the first exception handler whose CATCH statement contains the relevant exception class or one of its superclasses.

· In some cases, the system cannot find a handler for an exception within a specific TRY-ENDTRY structure but the exception is handled in a surrounding TRY-ENDTRY structure or passed along to a calling program. If this occurs, a CLEANUP block is executed before leaving the TRY-ENDTRY structure.

[image: image6.wmf]ã

SAP

AG 2002

Example: Handling a Predefined Exception

PARAMETERS: int1 TYPE i,

int2 TYPE i.

DATA:

result

TYPE i,

text TYPE

string

,

r_exc TYPE REF TO cx_

root

.

...

TRY.

result

= int1 * int2.

WRITE

result

.

CATCH cx_

sy

_

arithmetic

_

overflow

INTO r_exc.

text = r_exc

-

>

get

_text().

MESSAGE text TYPE 'I'.

ENDTRY.

...

If an overflow error occurs, the

runtime system raises the

cx

_

sy

_arithmetic_overflow

exception

Information

Overflow in the operation '*'

?

i

i

· In the above calculation, if the value range for data type i is exceeded, the runtime system raises the exception CX_SY_ARITHMETIC_OVERFLOW. This exception is handled in the implemented CATCH block.

· The object reference to the exception object is stored in the reference variable r_exc. Using r_exc and the functional method get_text, the handler accesses the exception text for this exception object and stores in the string variable text.

· To display exception texts as messages, the MESSAGE statement has been extended so that you can use any string:
MESSAGE <string> TYPE <type>.
As well as the message <string> that will be displayed, you must display the message type <type>, either as a literal or in a field.

· If the value range for data type i is not exceeded, no exception is raised and the TRY block is processed completely. The program then continues executing after the keyword ENDTRY.

· The class CX_SY_ARITHMETIC_OVERFLOW is a subclass of the classes CX_SY_ARITHMETIC_ERROR, CX_DYNAMIC_CHECK, and CX_ROOT. Thus the exception raised above can also be handled if you enter one of these classes after the CATCH statement.

· The keyword documentation for each keyword lists the exception classes whose exceptions may occur when the appropriate ABAP statement is executed.

[image: image7.wmf]ã

SAP

AG 2002

Example: Using Your Own Exceptions

CLASS lcl_

airplane

IMPLEMENTATION.

...

METHOD get_technical_attributes.

SELECT SINGLE weight tankcap FROM saplane

INTO (ex_weight, ex_tankcap)

WHERE planetype =

im

_type.

IF

sy

-

subrc

<> 0.

ex_weight = 100000.

ex_tankcap = 10000.

ENDIF.

ENDMETHOD.

...

ENDCLASS.

CLASS lcl_airplane DEFINITION

.

...

METHODS get_technical_attributes

IMPORTING

im

_type

TYPE

saplane

-

planetype

EXPORTING ex_weight TYPE s_plan_

wei

ex_tankcap TYPE s_capacity.

...

ENDCLASS.

Adapting the program:

If there is no table entry available,

raise and handle an exception you

have written

· The above program source code shows the method get_technical_attributes of the class lcl_airplane, which was implemented in an earlier exercise in this training course. It receives an airplane type as an import parameter and returns its weight and tank capacity as export parameters.

· The relevant information is read from the database table saplane. If the airplane type passed is not available in this table (that is, if sy-subrc <> 0), the values 100.000 and 10.000 respectively are assigned to the export parameters ex_weight and ex_tankcap. We will now change this behavior: If an airplane type is not entered in the table, an exception that we have defined should be raised and handled appropriately.

[image: image8.wmf]ã

SAP

AG 2002

Creating Your Own Exception Classes

Diese Knöpre hier

brauche ich auch

Report

MIME

Repository

Object Navigator

Repository

Infosystem

Tag

Library

Transport Organizer

Object Name

Description

privat

protected

public

abstract

Inherits From

Class Type:

Usual ABAP Class

Exception Class

Persistent Class

Final Class

Only modeled

ZBC401

_00

Class Library

Classes

W

orkbench

E

dit

G

oto

U

tilities

E

nvironment

System

H

elp

CX

_

STATICS

_CHECK

ZCX

_

WRONG

_

PLANETYPE

Class

Package

ZBC401

_00

!

Pattern

Pretty

Printer

· Exceptions are represented by objects that are instances of exception classes. Defining an exception is thus synonymous with creating an exception class.

· Exception classes are generally defined globally. For special exceptions that will only occur within a single ABAP program however, you can also define local exception classes.

· Global exception classes are defined and managed in the Class Builder. When you create a new class, if you use the correct naming convention (prefix ZCX_) and choose the class type Exception Class, the system automatically displays the Exception Builder instead of the Class Builder.

· The Exception Builder offers all the functions you need to create exception classes and generates specified components that cannot be changed. When you create an exception class, you must also specify which category of exception it will be - that is, whether it is derived from CX_STATIC_CHECK, CX_DYNAMIC_CHECK or CX_NO_CHECK.

[image: image9.wmf]ã

SAP

AG 2002

Maintaining Your Own Attributes and Exception

Texts

C

lass

E

dit

G

oto

U

tilities

E

nvironment

S

y

stem

H

elp

Class Builder: Change Class ZCX_WRONG_PLANETYPE

Attribute

Type

Re

Typing Associated Type

Nu

Texts

Attributes

CX_ROOT

TEXTID

PREVIOUS

KERNEL_ERRID

PL_TYPE

Type

SOTR_CONC

Type

SOTR_CONC

Type Re

CX_ROOT

Type

S380ERRID

Type

SAPLANE

-

PLANETYPE

Class Interface

ZCX_WRONG_PLANETYPE

Implemented/Active

Class Documentation

Const..

Pub..

Instan..

Pub..

Instan..

Pub..

Instan..

Pub..

Instan..

Pub..

Filter

Your own attributes

provide the user with

additional information

!

!

!

!

Exception text

used to describe

exception situation

in more detail

Exception ID

Text

CX_ROOT

An exception occurred

ZCX_WRONG_PLANETYPE

This airplane type is unknown

· The methods are all inherited from CX_ROOT. You can also add your own methods. The instance constructor is generated automatically.

· You can also define your own attributes, whose contents specify the exception in more detail. The Exception Builder ensures that the instance constructor has identically-named IMPORTING parameters for these attributes.

· The exception texts of global classes are defined on the Texts tab of the Exception Builder. They can contain parameters. To do this, use the elementary attributes of the exception class by enclosing their name in ampersands ('&') in the exception text.

· The exception texts of global exception classes are stored in their different translations in the Open Text Repository (OTR). Note that several texts can be assigned to a single class. You assign a text to an exception using the TEXTID attribute, which contains the globally unique ID of the text object within an exception object at runtime. The method GET_TEXT then exports this text, replaces any text parameters with the contents of the relevant attributes as necessary, and returns the text as a character string.

· For each global class, the Exception Builder generates a default text whose name matches the class name. (The name of this default text cannot be changed.) You need to create names for other texts. For each text, the Exception Builder generates a static constant that contains the associated ID in the OTR. You can then specify which text is to used when an exception is raised by passing an identifier to the IMPORTING parameter TEXTID of the instance constructor. If you do not specify a text, the default text is used.

[image: image10.wmf]ã

SAP

AG 2002

METHOD get_technical_attributes.

DATA: r_exc TYPE REF TO

cx_root,

text

TYPE string.

SELECT SINGLE weight

tankcap FROM

saplane

INTO (ex_weight, ex_tankcap)

WHERE

planetype =

im

_type.

IF

sy

-

subrc

<> 0.

TRY.

RAISE EXCEPTION TYPE

zcx_wrong_planetype

EXPORTING pl_type =

im

_type.

CATCH

zcx_wrong_planetype INTO r_exc.

text = r_exc

-

>get_text().

MESSAGE text TYPE 'I'.

ENDTRY.

ENDIF.

ENDMETHOD.

Raising and Handling Exceptions You Have Written

Example:

im_

type

=

A390

-

200

Information

The airplane type A390

-

200 is

unknown

i

i

?

· If the airplane type passed to the method has not been stored in the table saplane, the exception we defined previously, zcx_wrong_planetype, is raised. In addition, a TRY-ENTRY control structure is implemented that is only processed if sy-subrc <> 0.

· The TRY block contains the application code that is to handle the exceptions. When the exception is raised, the IMPORTING parameter pl_type of the instance constructor is filled. (This parameter is automatically generated by the Exception Builder.) Using this parameter, the program then assigns the value of the airplane type to the identically-named attribute.

· The exception that has been raised is handled in the CATCH block. The reference to the exception object is stored in the reference variable r_exc, which was created as a local data object in the method (TYPE REF TO cx_root).

· Since the IMPORTING parameter TEXTID of the instance constructor was not filled when the exception was raised, the default text generated when the exception class was created is addressed using the functional method get_text. The method GET_TEXT then exports this text, replaces the text parameter with the contents of the attribute pl_type, and returns the text as a character string.

· The returned text is stored in the local data object text, which has the type string. The text is then displayed as an information (type I) message.

[image: image11.wmf]ã

SAP

AG 2002

Passing Exceptions Along

CLASS class IMPLEMENTATION.

...

METHOD meth.

...

RAISE EXCEPTION TYPE

cx_

exception

.

ENDMETHOD.

ENDCLASS.

CLASS

class

DEFINITION

.

...

METHODS meth IMPORTING <im_

parameter

>

EXPORTING <ex_

parameter

>

RAISING

cx_

exception

.

...

ENDCLASS.

REPORT propagate_exceptions.

...

DATA

r_obj TYPE REF TO class.

...

TRY.

r_obj

-

>meth(EXPORTING ...

IMPORTING ...).

CATCH cx_exception

.

...

ENDTRY.

l

Exceptions that occur in

procedures do not necessarily

need to be handled there; they

can be passed along to the

calling program.

‚

�

· Exceptions that occur in procedures (methods, function modules, or subroutines) do not necessarily need to be handled there; they can be passed along to the calling program. The calling program can then handle the exception itself or also pass it along to its own caller, and so on.

· The highest levels to which an exception can be passed are processing blocks without local data areas - that is, event blocks or dialog modules. The exceptions passed along by the called procedures must be dealt with there, as must any exceptions raised within this processing block itself. Otherwise a runtime error occurs.

· To pass along an exception from a procedure, you generally use the RAISING addition when defining the procedure interface.

· In methods of local classes and subroutines, specify the RAISING addition directly when defining the procedure (METHODS meth ... RAISING cx_... cx_..., FORM form ... RAISING cx_... cx_...). After RAISING, list the exception classes whose objects are to passed along.

· In methods of global classes, the exception classes whose objects are to be propagated are entered in the exception table of the method in the Class Builder. Check the Exception Class field in this exception table. Similarly, exceptions raised by function modules are passed along by being entered in the Function Builder.

[image: image12.wmf]ã

SAP

AG 2002

Example: Passing Exceptions Along

METHOD get_technical_attributes.

SELECT SINGLE weight tankcap

FROM saplane

INTO (ex_weight, ex_tankcap)

WHERE planetype = im_type.

IF sy

-

subrc <> 0.

RAISE EXCEPTION

TYPE zcx_wrong_planetype

EXPORTING pl_type = im_type

.

ENDIF.

ENDMETHOD.

CLASS lcl_airplane DEFINITION.

METHODS display_attributes.

METHODS get_technical_attributes

IMPORTING im_type TYPE saplane

-

planetype

EXPORTING ex_weight TYPE s_plan_w

ei

ex_tankcap TYPE s_capaci

ty

RAISING zcx_wrong_planetype

.

ENDCLASS.

METHOD display_attributes.

DATA: r_exc TYPE REF TO cx_root,

text TYPE string.

...

TRY.

get_technical_attributes(

EXPORTING im_type = planetype

IMPORTING ex_weight = weight

ex_tankcap = cap).

WRITE: /'Gewicht:'(003), weight,

'Tankkapazität:'(004), cap.

CATCH zcx_wrong_planetype INTO r_exc

.

text = r_exc

-

>get_text().

MESSAGE text TYPE 'I'.

ENDTRY.

ENDMETHOD.

�

‚

· As in the previous example, the exception we have defined (zcx_wrong_planetype) is raised if the airplane type passed to the method get_technical_attributes is not stored in the table saplane. Here, however, the exception is only raised in the method get_technical_attributes, not handled there.

· To pass the exception along to the caller of the method, we enter it after the RAISING keyword.

· Now, the caller - that is, the method display_attributes - handles the exception. For this purpose, we have implemented a TRY-ENDTRY control structure in this method. The method get_technical_attributes is now called in the TRY block of this control structure.

· If the exception is raised in the method get_technical_attributes, the program continues by handling this exception. That is, the method get_technical_attributes is terminated and the appropriate CATCH block is processed within the caller. Note in particular that the program no longer executes the WRITE statements entered in the TRY block after get_technical_attributes is called.

[image: image13.wmf]ã

SAP

AG 2002

Exceptions That Must Be Declared

cx_

dynamic

_check

cx_

static

_check

cx_no_check

cx_

root

l

You can handle these

exceptions. If you do not,

they are passed along

automatically. You cannot

pass them explicitly using

the RAISING addition

l

Not part of syntax check

l

You must handle these

exceptions or pass them

along explicitly using the

RAISING addition

l

Not part of syntax check

l

You must handle

these exceptions or

pass them along

explicitly using the

RAISING addition

l

Part of syntax check

· Subclasses of CX_STATIC_CHECK: The relevant exception must either be handled, or passed along explicitly using the RAISING addition. The syntax check ensures that this is the case. At present, only exceptions you define yourself for error situations in the application code are subclasses of CX_STATIC_CHECK.

· Subclasses of CX_DYNAMIC_CHECK: The relevant exception does not have to be declared. If such an exception occurs at runtime, just as with subclasses of CX_STATIC_CHECK, it must either be handled or passed along explicitly using a RAISING addition. However, this is not checked in the syntax check. If such an exception occurs at runtime and is not either handled or passed along, a runtime error occurs. Most predefined exceptions with the prefix CX_SY_... for error situations in the runtime environment are subclasses of CX_DYNAMIC_CHECK.

· Subclasses of CX_NO_CHECK: These exceptions cannot be declared. These exceptions can be handled. Otherwise they are automatically passed along. The syntax check never finds an error here. All exceptions of the category CX_NO_CHECK that are not handled in the call hierarchy are automatically passed to the top level, If they are not caught there, they cause a runtime error. Some predefined exceptions with the prefix CX_SY_... for error situations in the runtime environment are subclasses of CX_NO_CHECK.

[image: image14.wmf]ã

SAP

AG 2002

l

Create your own exception classes

l

Raise exceptions in a program

l

Handle exceptions

l

Pass exceptions along

You are now able to:

Exception Handling: Unit Summary

 Exception Handling Exercise 1

	[image: image15.png]

	Unit:
Exception Handling

Topic:
Defining, raising, propagating, and catching class-based exceptions

	[image: image16.png]

	At the conclusion of these exercises, you will be able to:

· Define exception classes

· Raise class-based exceptions

· Pass exceptions along

· Catch class-based exceptions

	[image: image17.wmf]
	Improve your program so that, when the airplane attributes are displayed, an error text is displayed instead of the default values if the airplane type is invalid.
Implement this using the class-based exceptions concept.

	[image: image1.wmf]ã

SAP

AG 2002

l

Predefined exceptions and exceptions you define

yourself

l

Raising, handling, and passing along exceptions

Contents:

Exception Handling

	Program:
ZBC401_##_RAISE_TRY
Template:
SAPBC401_EVES_MAIN_8B
Model solution:
SAPBC401_EXCS_RAISE_TRY
is your two-digit group number

1-1
Copy your solution to the last exercise from the unit Events, or the corresponding model solution SAPBC401_EVES_MAIN_B, with all their includes. Give them the new names ZBC401_##_RAISE_TRY, ZBC401_##_RAISE_TRY_CL1, and ZBC401_##_RAISE_TRY_CL2.

1-2
Define a global exception class. (We suggest the name ZCX_##_INVALID_PLANETYPE.)
Choose the appropriate superclass so that the system performs a syntax check to ensure that, after the relevant exception is raised, it is either handled or passed explicitly along using a RAISING addition.
Add an attribute for the airplane type (suggested name: PLANETYPE) and assign the type S_PLANETYPE to it.
Create a default error message that can be enhanced dynamically to include the airplane type.
1-3
Raise the exception in the get_technical_attributes method of your local class lcl_airplane.
Add a RAISING addition to the definition part of the method, so that the exception can be passed along.

1-4
Catch the exception in the display_attributes method of your local class lcl_airplane.
To do this, you will need a local reference to the exception instance (suggested name: r_exception). Assign a type to this reference using the superclass CX_ROOT.
Read the error text from the exception instance using the get_text method. To do this you will need an auxiliary variable of the type string (suggested name exc_text).

	
	

 Exception Handling Solution 1

	[image: image18.png]

	Unit:
Exception Handling

Topic: Defining, propagating, and raising events

Model solution: Include BC401_EXCS_RAISE_TRY_CL2.

&---

*& Include BC401_EXCS_RAISE_TRY_CL2 *
&---

...

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.
 PUBLIC SECTION.
 "---

 CONSTANTS: pos_1 TYPE i VALUE 30.
 METHODS: constructor IMPORTING
 im_name TYPE string
 im_planetype TYPE saplane-planetype,
 display_attributes.
 CLASS-METHODS: display_n_o_airplanes.
 EVENTS: airplane_created.
 PRIVATE SECTION.
 "--

 METHODS: get_technical_attributes
 IMPORTING im_type TYPE saplane-planetype
 EXPORTING ex_weight TYPE s_plan_wei
 ex_tankcap TYPE s_capacity
 RAISING cx_bc401_invalid_planetype.
 DATA: name TYPE string,
 planetype TYPE saplane-planetype.
 CLASS-DATA: n_o_airplanes TYPE i.
ENDCLASS. "lcl_airplane DEFINITION
--

* CLASS lcl_airplane IMPLEMENTATION *
--

CLASS lcl_airplane IMPLEMENTATION.
 METHOD constructor.
 ...

 ENDMETHOD. "constructor
 METHOD display_attributes.
 DATA: weight TYPE saplane-weight,
 cap TYPE saplane-tankcap,
 r_exception TYPE REF TO cx_root,
 exc_text TYPE string.
 WRITE: / icon_ws_plane AS ICON,
 / 'Name des Flugzeugs'(001), AT pos_1 name,
 / 'Type of airplane: '(002), AT pos_1 planetype.
* handle exception in case of invalid planetype:
 TRY.
 get_technical_attributes(EXPORTING im_type = planetype
 IMPORTING ex_weight = weight
 ex_tankcap = cap).
 WRITE: / 'Gewicht:'(003), weight,
 'Tankkap:'(004), cap.
 CATCH cx_bc401_invalid_planetype INTO r_exception.
 exc_text = r_exception->get_text().
 WRITE: / exc_text COLOR COL_NEGATIVE.
 ENDTRY.
 ENDMETHOD. "display_attributes
 METHOD display_n_o_airplanes.
 ...

 ENDMETHOD. "display_n_o_airplanes
 METHOD get_technical_attributes.
 SELECT SINGLE weight tankcap FROM saplane
 INTO (ex_weight, ex_tankcap)
 WHERE planetype = im_type.
 IF sy-subrc <> 0.
 RAISE EXCEPTION TYPE cx_bc401_invalid_planetype
 EXPORTING planetype = im_type.
 ENDIF.
 ENDMETHOD. "get_technical_attributes
ENDCLASS. "lcl_airplane IMPLEMENTATION

© SAP AG
TAW10
13-1

