
0 [image: image1.wmf]ã

SAP

AG 2002

l

Cast

l

Polymorphism

Contents:

Casting

[image: image2.wmf]ã

SAP

AG 2002

l

Use casts

l

Develop generic programs using polymorphism

with inheritance

At the conclusion of this unit, you will be able to:

Casting: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Casting (1)

Narrowing cast

Narrowing cast

Widening cast

Widening cast

Inheritance and polymorphism

Inheritance and polymorphism

[image: image4.wmf]ã

SAP

AG 2002

DATA: r_vehicle TYPE REF TO

lcl

_vehicle,

r_truck TYPE REF TO

lcl

_truck.

CREATE OBJECT r_truck.

* Narrowing Cast

r_vehicle = r_truck

Principle of Narrowing Cast

r_truck

r_vehicle

r_vehicle

(5)

lcl

_truck

Public

Geerbt

get_make

get_count

display_attributes

set_attributes

estimate_fuel

Redefiniert

get_cargo

...

· After the narrowing cast, you can use the r_vehicle reference to access the components of the truck instance that were inherited from lcl_vehicle - obviously, in some cases with the limitations entailed by their visibility. You can no longer access the truck-specific part of the instance (get_cargo in the above example) using the r_vehicle reference.

[image: image5.wmf]ã

SAP

AG 2002

DATA: r_vehicle TYPE REF TO

lcl

_vehicle,

r_truck TYPE REF TO

lcl

_truck,

level TYPE

ty

_level.

* generic access to subclass services

level = r_truck

-

>estimate_fuel(1000).

* Narrowing Cast

r_vehicle = r_truck.

* Use of the subclass instance in the

superclass

context

level = r_vehicle

-

>estimate_fuel(1000).

Compatibility and Narrowing Cast

l

Instances from subclasses can be used in any context, in which t

he

instances of the

superclass

appear

l

The components inherited from the

superclass

can be addressed

l

Generic access by the client is possible

· One of the significant principles of inheritance is that an instance from a subclass can be used in any context, in which an instance from the superclass appears. This is possible because the subclass has inherited all components from the superclass and therefore has the same interface as the superclass. The user can therefore address the subclass instance in the same way as the superclass instance.

· Variables that point to a superclass instance can also refer to subclass instances at runtime.

· The assignment of a subclass instance to a reference variable of the type "reference to superclass" is described as a narrowing cast, because you are switching from a more detailed view to a one with less detail.

· The description "up-cast" is also used.

· What is a narrowing cast used for? A user who is not interested in the finer points of cars, trucks, and busses (but only, for example, in the fuel consumption and tank gauge) does not need to know about them. This user only wants and needs to work with (references to) the lcl_vehicle class. However, in order to allow the user to work with cars, busses, or trucks, you generally need a narrowing cast.

[image: image6.wmf]ã

SAP

AG 2002

(4)

lcl

_bus

lcl

_rental

lcl

_vehicles

1..*

1

(5)

lcl

_truck

(1)

lcl

_rental

Private

Public

itab

?

The client

lcl

_truck

lcl

_bus

(2)

lcl

_car

Generic Access?

· A possible client (car rental company for example) wants to access the list of vehicles with identically-named services. The client wishes to, for example, calculate the required amount of fuel. The client is not concerned with the details of how the car, bus, or truck do this.

[image: image7.wmf]ã

SAP

AG 2002

2

lcl

_bus

(1)

lcl

_rental

Private

Public

add

_

vehicle

3

lcl

_truck

4

lcl

_car

vehicle

_

list

...

METHODS

:

add

_

vehicle

IMPORTING

im_

vehicle

TYPE

REF

TO

lcl

_

vehicle

.

...

The client

Preparations for Generic Access (1)

· Objects from different classes (lcl_bus, lcl_truck, and lcl_car in the above example) can be stored in an internal table consisting of references to the superclass (lcl_vehicle in the above example),and then processed in a uniform manner using the same access technique.

· A client, the car rental company in this example, can then generically access the identically-named service of the different classes. (This will be discussed in more detail.)

[image: image8.wmf]ã

SAP

AG 2002

CLASS lcl_rental DEFINITION.

PUBLIC SECTION.

METHODS

add_vehicle

IMPORTING im_vehicle TYPE REF TO lcl_vehicle.

METHODS calc_estimated_fuel

RETURNING VALUE(re_fuel)

...

PROTECTED SECTION.

DATA: vehicle_list TYPE TABLE OF REF TO lcl_vehicle.

ENDCLASS.

CLASS lcl_rental IMPLEMENTATION.

METHOD add_vehicle.

APPEND im_vehicle TO vehicle_list.

ENDMETHOD.

METHOD calc_estimated_fuel.

DATA: r_vehicle TYPE REF TO lcl_vehicle.

LOOP AT vehicle_list INTO r_vehicle.

re_fuel = re_fuel + r_vehicle

-

>estimate_fuel(im_distance)

.

ENDLOOP.

ENDMETHOD.

ENDCLASS.

Preparations for Generic Access (2)

· When objects from different classes react differently to the same method call, this is known as polymorphism. To do this, the classes implement the same method in different ways. This can be done using inheritance, by redefining a method from the superclass in subclasses and implementing it differently. (Interfaces will be discussed later; they too can enable polymorphic behavior.)
· When an instance receives a message to execute a particular method, then that method is executed if it has been implemented by the class the instance belongs to. If the class has not implemented that method, but only inherited and not redefined it, then a search up through the inheritance hierarchy is carried out until an implementation of that method is found.

· The dynamic type, not the static type of the reference variable is used to search for the implementation of a method (will be discussed later). r_vehicle->estimate_fuel above therefore uses the class of the instance that r_vehicle actually refers to to search for the implementation of estimate_fuel. The static type for r_vehicle, which is always REF TO lcl_vehicle is not used.

· Polymorphism is one of the main strengths of inheritance: The user can work in the same way with different classes, regardless of their implementation. The search for the right implementation of a method is carried out by the runtime system, not the user.

[image: image9.wmf]ã

SAP

AG 2002

METHOD calc

_

estimated

_

fuel

.

DATA

: r_

vehicle

TYPE

REF

TO

lcl

_

vehicle

.

LOOP AT vehicle

_

list into

r_

vehicle

.

re

_

fuel

=

re

_

fuel

+ r_

vehicle

-

>

estimate

_

fuel

(im_

distance

)

ENDLOOP

.

ENDMETHOD

.

Polymorphism

-

Generic Access

(5)

lcl

_truck

Public

Geerbt /

redefiniert

Estimate

_

fuel

(2)

lcl

_bus

Public

Geerbt /

redefiniert

Estimate

_

fuel

METHOD

estimate

_

fuel

.

...

total_

weight

=

max

_

passengers

*

average

_

weight

+

weight

.

re

_

fuel

= total_

weight

*

im_

distance

*

factor

.

ENDMETHOD.

METHOD

estimate

_

fuel

.

...

total_

weight

=

max

_

cargo

+

weight

.

re

_

fuel

= total_

weight

*

im_

distance

*

factor

.

ENDMETHOD

.

vehicle

_

list

· Which coding is actually executed when estimate_fuel is called depends on the dynamic type of the reference variable r_vehicle, that is it depends on which object from which (sub)class r_vehicle refers to.

· You can use polymorphism to write programs that are generic to a high degree and that do not even need to be changed if use cases are added. In the simple example above, this means that, should a further subclass be added, for example for motorbikes, the above coding would not need to be changed.
A redefined method will be created in the server class lcl_motorbike.

[image: image10.wmf]ã

SAP

AG 2002

Static and Dynamic Types of References

l

The static type of a reference variable

§

Is defined using

TYPE REF TO

§

Remains constant throughout the program flow

§

Defines which attributes and methods can be addressed

l

The dynamic type of a reference variable

§

Is defined by assignment

§

Can change during the program run

§

Defines which code is to be executed for

redefined methods

DATA: r_vehicle

TYPE REF TO

lcl

_vehicle.

r_vehicle

(5)

lcl

_truck

Inherited /

redefined

Estimate_

fuel

Estimate_fuel

(2)

lcl

_bus

Inherited /

redefined

Estimate_

fuel

Estimate_fuel

· A reference variable always has two types, static and dynamic:

· The static type of a reference variable is determined by variable definition using TYPE REF TO. It cannot and does not change. It specifies which attributes and methods can be addressed

· The dynamic type of a reference variable is the type of the instance currently being referred to, it is therefore determined by assignment and can change during the program run. It defines what code is to be executed for redefined methods.

· In the example, the static type of the r_vehicle variable is always REF TO lcl_vehicle, but its dynamic type after the cast is REF TO lcl_bus or REF TO lcl_truck.

· In the Debugger, the reference me can be used to determine the dynamic type.

[image: image11.wmf]ã

SAP

AG 2002

*

Procedural

realisation of the example without polymorphism

DATA:

vehicle

_

list

TYPE TABLE OF

vehicle

_

list

_

type

,

vehicle

TYPE

vehicle

_

list

_

type

, ...

...

LOOP AT

vehicle

_

list

INTO

vehicle

.

CASE

vehicle

-

category

.

WHEN 'TRUCK'.

PERFORM

estimate

_

fuel

_

truck

USING ...

CHANGING

fuel

.

WHEN

'BUS'.

PERFORM estimate

_

fuel

_

bus USING

...

CHANGING

fuel

.

ENDCASE.

ADD fuel

TO

needed

_

fuel

.

ENDLOOP

.

name

category

...

vehicle

_

list

Comparison to Procedural Programming

l

In object

-

oriented programming, you do not need to change the coding if

you add use cases

l

In a procedural program, you would have to adjust

CASE

constructions,

for example:

truck1

bus1

bus2

truck2

truck3

· Using polymorphism makes generic programming easier. Instead of implementing a CASE or IF statement, you can have one access or call, which improves readability and does not need to be changed if you extend the program by adding further subclasses.

[image: image12.wmf]ã

SAP

AG 2002

Narrowing cast

Narrowing cast

Widening cast

Widening cast

Inheritance and polymorphism

Inheritance and polymorphism

Casting (2)

[image: image13.wmf]ã

SAP

AG 2002

2

lcl

_bus

(1)

lcl

_rental

Private

Public

get_max_cargo

3

lcl

_truck

4

lcl

_car

vehicle_list

The client

3

lcl

_truck

max_cargo

= 50

max_cargo

= 30

METHOD get_max_cargo.

DATA: r_vehicle TYPE REF TO

lcl

_vehicle.

LOOP AT vehicle_list INTO r_vehicle.

* Problem: is this really a truck ?

* Determine the max cargo

ENDLOOP.

ENDMETHOD.

Truck or other

vehicle?

Use of Widening Cast

· The client, the car rental company in the above example, wants to execute a function for specific vehicles form the list (vehicle_list). For example, the client wants to ascertain the truck with the largest cargo capacity.
However, not all vehicles are in the trucks list, it also includes references to cars and busses.

[image: image14.wmf]ã

SAP

AG 2002

(2)

lcl

_bus

5

lcl

_rental

(3)

lcl

_truck

(4)

lcl

_car

get

_

max

_

cargo

vehicle

_

list

(9)

lcl

_truck

max

_

cargo

= 50

max

_

cargo

= 30

METHOD get

_

max

_

cargo

.

DATA

: r_

vehicle

TYPE

REF

TO

lcl

_

vehicle

,

r_

truck

TYPE

REF

TO

lcl

_

truck

.

LOOP AT vehicle

_

list INTO

r_

vehicle

.

TRY

.

r_

truck

?=

r_

vehicle

.

*

put max cargo

in variable

re

_

cargo

...

CATCH cx

_

sy

_

move

_

cast

_

error

.

*

react on that cast error

ENDTRY

.

ENDLOOP

.

ENDMETHOD

.

(1)

lcl

_rental

Widening Cast: Example

· The type of case described above is known as a widening cast (or "down cast") because it changes from a less detailed view to one with more detail. The target reference (r_truck in the above example) must correspond to the object reference (r_vehicle in the above example), that is the instance must have the details implied by the reference.

· The widening cast logically represents the opposite of the narrowing cast. The widening cast cannot be checked statically, only at runtime. The Cast Operator ?= (or the equivalent MOVE ... ?TO …) must be used to make this visible.

· With this kind of cast, a check is carried out at runtime to ensure that the current content of the source variable corresponds to the type requirements of the target variables. In this example, it checks that the dynamic type of the source reference r_vehicle is compatible with the static type of the target reference r_truck. If it is, the assignment is carried out. Otherwise, an exception that can be handled is raised, and the original value of the target variable remains the same. This exception of the error class CX_SY_MOVE_CAST_ERROR can be caught using TRY-ENDTRY and the CATCH statement. (This will be discussed in more detail later.)

· Another way of preventing the runtime error would be to use RTTI (Runtime Type Identification). This is a class library for ascertaining type attributes at runtime.

[image: image15.wmf]ã

SAP

AG 2002

Narrowing cast

Narrowing cast

Widening cast

Widening cast

Inheritance and polymorphism

Inheritance and polymorphism

Casting (3)

[image: image16.wmf]ã

SAP

AG 2002

Semantics and Use with Inheritance

l

Inherited components must behave in subclasses

exactly as they do in

superclasses

for all users

l

When you redefine a method its semantics must remain

the same; you cannot change the signature

l

Using inheritance:

l

Allows you to enhance classes using

generalization/specialization and hence achieve

better software structure

l

Provides possibility of

polymorphic

behavior,

"generic programming"; CASE constructions no

longer needed

n

Must not be used solely for "code inheritance"

Rules:

· A subclass instance can be used in any context in which a superclass instance also appears. Moreover: The user does not and is not intended to know whether they are dealing with a subclass or a superclass instance. The user works only with references to the superclass and must rely on the inherited components behaving in the subclass instances exactly as they do in the superclass instances, otherwise the program will not work.

· On the other hand, this ensures useful restrictions on the implementation of the subclasses: Inherited components must keep their inherited semantics. You cannot use inherited attributes or events in any way other than intended in the superclass, and you cannot change method semantics by redefinition.

· You must avoid "code inheritance": It is not correct for one class to inherit from another simply because part of the functionality required is already implemented there.

[image: image17.wmf]ã

SAP

AG 2002

Incorrect Use of Inheritance

l

Inheritance is often used incorrectly:

n

To simply reuse code

n

Instead of additional attributes/aggregation/role

concepts

n

The use of inheritance does not always correspond

to expectations in the real world

Rules:

car

car_red

car_blue

Superclass

Rectangular

change_width

change_height

Subclass

square

design ?

design ?

· Using inheritance instead of attributes, or a misunderstanding of inheritance as an is-one relationship often leads to the following kind of design: the superclass car has the subclasses red car, green car, and so on. These subclasses all have an identical structure and identical behavior.

· Because an instance cannot change its class, in circumstances like the following, you should not use inheritance directly, but use a so-called role design pattern instead:
The class employee has the subclasses full-time employee and part-time employee. What happens when a part-time employee becomes a full-time employee? A new full-time employee object would have to be instantiated and all the information copied from the part-time employee object. However, users who still have a reference to the part-time employee instance would then be working with a part-time employee object that logically does not exist anymore.

· The use of inheritance does not always correspond to expectations in the real world: For example, if the class square inherits from the class rectangle, the latter will have two separate methods for changing length or width, although the sides of the square actually need to be changed by the same measurement.

[image: image18.wmf]ã

SAP

AG 2002

l

Use casts

l

Develop generic programs using polymorphism

with inheritance

You are now able to:

Casting: Unit Summary

 Casting

Exercises

	[image: image19.png]

	Unit: Casting

Topic: Polymorphism

	[image: image20.png]

	At the conclusion of these exercises, you will be able to:

· Describe polymorphism and inheritance

· Use generic programming for inheritance relationships and implement polymorphic method calls

	[image: image21.jpg]

	Model solution:
SAPBC401_CASS_MAIN_A

SAPBC401_INHS_A include program

1-1
Extend your existing program ZBC401_##_MAIN_AIRPLANE or start with the model solution from the last chapter’s exercises.

1-2
In your main program, define an internal table for buffering airplane objects. The type of the internal table should be REF TO lcl_airplane.

1-3
Try to insert the planes (passenger and cargo) into this internal table and execute the display_attributes method for every plane in a LOOP.
Read the internal table in the LOOP using the auxiliary reference variable r_airplane (type REF TO lcl_airplane).

1-3-1
Was this successful?

1-3-2
Check the internal table and the execution of the display_attributes method in the Debugger

1-3-3
Which source code is executed when the display_attributes method is called, the original method from the superclass or the relevant redefined methods from the subclasses? What would happen if one of these methods had not been redefined in the subclass?

	[image: image22.jpg]

	Model solution:
SAPBC401_CASS_MAIN_B

SAPBC401_CASS_B include program

Template:
SAPBC401_CAST_B

2-1
Copy the definition of the class lcl_carrier from the template SAPBC401_CAST_B to your own include program ZBC401_##_AIRPLANE (hence adding this class to your include program).

2-2
Add the following public instance methods to the class lcl_carrier:

2-2-1
The first method is add_airplane, which adds planes to the list of planes airplane_list already defined in the class. The transfer parameter is a reference to the class lcl_airplane.
Have a close look at the definition of the internal table airplane_list.

2-2-2
The second method is display_airplanes, which displays the planes from the list airplane_list. The display_attributes method from class lcl_airplane should be called at this point.

2-2-3
The third method is display_attributes, which displays the airline attributes. This includes the airline name and the list of planes (you can use icon_flight as an icon before the name).

2-3
Go back to your main program.

2-3-1
At the DATA statement, create a reference to the class lcl_carrier.

2-3-2
Comment out all statements affecting the internal table (or delete them).

2-3-3
Create an airline and fill the transfer parameters with data of your own choice.

2-3-4
Add the planes already created in the last exercise (passenger and cargo planes) to the list of planes airplane_list. To do this, call the method add_airplane of the class lcl_carrier.
Create more planes and add them to the airplane list.

2-3-5
Display the airline attributes by calling the display_attributes method of the class lcl_carrier.

2-3-6
Question: Which code is executed when you execute display_attributes within display_airplanes.

 Casting Solutions
	[image: image23.png]

	Unit:
Casting

Topic:
Polymorphism

&---

*& Report SAPBC401_CASS_MAIN_a *

*& *

&---

*& show casting operations ... *

&---

REPORT sapbc401_cass_main_a.
INCLUDE <icon>.
INCLUDE sapbc401_inhs_a.
DATA: r_plane TYPE REF TO lcl_airplane,
 r_cargo TYPE REF TO lcl_cargo_plane,
 r_passenger TYPE REF TO lcl_passenger_plane,
 plane_list TYPE TABLE OF REF TO lcl_airplane.
START-OF-SELECTION.
*##############################

 lcl_airplane=>display_n_o_airplanes().
 CREATE OBJECT r_passenger EXPORTING
 im_name = 'LH BERLIN'
 im_planetype = '747-400'
 im_seats = 345.
 APPEND r_passenger TO plane_list.
 CREATE OBJECT r_cargo EXPORTING
 im_name = 'US HErcules'
 im_planetype = '747-500'
 im_cargo = 533.
 APPEND r_cargo TO plane_list.
 LOOP AT plane_list INTO r_plane.
 r_plane->display_attributes().
 ENDLOOP.
 lcl_airplane=>display_n_o_airplanes().
&---

*& Report SAPBC401_CASS_MAIN_b *
*& *

&---

*& carrier adds airplanes to its airplane_list --> polymorphism *
&---

REPORT sapbc401_cass_main_b.
INCLUDE <icon>.
INCLUDE sapbc401_cass_b.
DATA: r_plane TYPE REF TO lcl_airplane,
 r_cargo TYPE REF TO lcl_cargo_plane,
 r_passenger TYPE REF TO lcl_passenger_plane,
 r_carrier type ref to lcl_carrier.
START-OF-SELECTION.
*##############################

***** Create Carrier **
 create object r_carrier exporting im_name = 'Smile&Fly-Travel'.
***** Passenger Plane **
 CREATE OBJECT r_passenger EXPORTING
 im_name = 'LH BERLIN'
 im_planetype = '747-400'
 im_seats = 345.
***** cargo Plane **
 CREATE OBJECT r_cargo EXPORTING
 im_name = 'US HErcules'
 im_planetype = '747-500'
 im_cargo = 533.
***** insert planes into itab if client ***************************
 r_carrier->add_airplane(r_passenger).
 r_carrier->add_airplane(r_cargo).
***** show all airplanes inside carrier ***************************
 r_carrier->display_attributes().

* CLASS lcl_airplane DEFINITION

* Class definitions of ... lcl_airplane, cargo- and passenger_plane
* ...

* ...

* CLASS lcl_carrier DEFINITION

CLASS lcl_carrier DEFINITION.
 PUBLIC SECTION.
 "--

 METHODS: constructor IMPORTING im_name TYPE string,
 get_name RETURNING value(ex_name) TYPE string,
 add_airplane IMPORTING
 im_plane TYPE REF TO lcl_airplane,
 display_airplanes,
 display_attributes.
 PRIVATE SECTION.
 "-----------------------------------

 DATA: name TYPE string,
 airplane_list type TABLE OF REF TO lcl_airplane.
ENDCLASS.

* CLASS lcl_carrier IMPLEMENTATION

CLASS lcl_carrier IMPLEMENTATION.
 METHOD add_airplane.
 APPEND im_plane TO airplane_list.
 ENDMETHOD.
 METHOD display_attributes.
 WRITE: icon_flight AS ICON, name . uline. uline.
 display_airplanes().
 ENDMETHOD.
 METHOD display_airplanes.
 data: r_plane type ref to lcl_airplane.
 loop at airplane_list into r_plane.
 r_plane->display_attributes().
 endloop.
 ENDMETHOD.
 METHOD constructor.
 name = im_name.
 ENDMETHOD.
 METHOD get_name.
 ex_name = name.
 ENDMETHOD.
ENDCLASS.
© SAP AG
TAW10
8-25

