
0 [image: image1.wmf]ã

SAP

AG 2002

l

Generalization / specialization of classes

Contents:

Inheritance

[image: image2.wmf]ã

SAP

AG 2002

l

Define an inheritance relationship between

classes

l

Redefine methods

At the conclusion of this unit, you will be able to:

Inheritance: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

lcl

_

truck

-

max

_

cargo

-

n_o_

tanks

-

n_o_

wheels

+...

+

get

_

cargo

Inheritance: UML Example

lcl

_

vehicle

-

make

-

modell

-

ser

_

no

-

color

-

n_o_

vehicles

+

constructor

+

display

_

attributes

+

get

_

count

lcl

_

car

-

car

_

type

-

max

_

seats

-

accelertion

+...

+

get

_

type

lcl

_

bus

-

max

_

passengers

-

lavatory

-

television

+...

+

get

_

passengers

"is a"

relationship

· Inheritance is a relationship, in which one class (the subclass) inherits all the main characteristics of another class (the superclass). The subclass can also add new components (attributes, methods, and so on) and replace inherited methods with its own implementations.

· Inheritance is an implementation relationship that emphasizes similarities between classes. In the example above, the similarities between the car, bus, and truck classes are extracted to the vehicle superclass. This means that common components are only defined/implemented in the superclass and are automatically present in the subclasses.

· The inheritance relationship is often described as an "is a" relationship: A truck is a vehicle.

[image: image4.wmf]ã

SAP

AG 2002

Multiple Inheritance?

Specialization

Generalization

No

multiple inheritance

lcl

_super1

lcl

_super2

lcl

_sub1

lcl

_sub2

lcl

_sub3

· Inheritance should be used to implement generalization and specialization relationships. A superclass is a generalization of its subclasses. The subclass in turn is a specialization of its superclasses.

· The situation in which a class, for example lcl_sub2, inherits from two classes (lcl_super1 and lcl_super2) simultaneously, is known as multiple inheritance. However, this is not implemented in ABAP Objects. ABAP Objects only has single inheritance.
You can, however, simulate multiple inheritance in ABAP Objects using interfaces (see the section on interfaces).

· Single inheritance does not mean that the inheritance tree only has one level. On the contrary, the direct superclass of one class can in turn be the subclass of a further superclass. In other words: The inheritance tree can have any number of levels, so that a class can inherit from several superclasses, as long as it only has one direct superclass.

· Inheritance is a "one-sided relationship": Subclasses know their direct superclasses, but (super)classes do not know their subclasses.

[image: image5.wmf]ã

SAP

AG 2002

Relationships Between

Superclasses

and Subclasses

l

Common components only exist once in the

superclass

n

New components in the

superclass

are

automatically available in subclasses

n

Amount of new coding is reduced

("programming by difference")

l

Subclasses are extremely dependent on

superclasses

n

"White Box Reuse":

Subclass must possess detailed knowledge of

the implementation of the

superclass

lcl

_sub

lcl

_super

Inherited

components

New

components

· If inheritance is used properly, it provides a significantly better structure, as common components only need to be stored once centrally (in the superclass) and are then automatically available to subclasses. Subclasses also benefit from modifications (however, they can also be invalidated as a result).

· Inheritance provides very strong links between the superclass and the subclass. The subclass must possess detailed knowledge of the implementation of the superclass, particularly for redefinition, but also in order to use inherited components. Even if the superclass does not technically know its subclasses, the subclass often makes additional requirements of the superclass, for example, because a subclass needs certain protected components or because implementation details in the superclass need to be changed in the subclass in order to redefine methods. The basic reason is that the developer of a (super)class cannot normally predict all the requirements that subclasses will later need to make of the superclass.

[image: image6.wmf]ã

SAP

AG 2002

Inheritance: Syntax

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS: estimate_fuel

IMPORTING im_distance TYPE s_distance

RETURNING VALUE(re_fuel) TYPE ty_fuel.

PRIVATE SECTION.

DATA: make

TYPE

string

,

...

ENDCLASS.

CLASS

lcl

_truck DEFINITION

INHERITING FROM

lcl

_vehicle.

PUBLIC SECTION.

METHODS:

get

_

cargo

RETURNING VALUE(

re

_

cargo

) TYPE

ty

_

cargo

.

PRIVATE SECTION.

DATA: max_cargo TYPE

ty

_

cargo

.

ENDCLASS.

· Normally the only other entry required for subclasses is what has changed in relation to the direct superclass. Only additions are permitted in ABAP Objects, that is, in a subclass you can "never take something away from a superclass". All components from the superclass are automatically present in the subclass.

· The attributes of the superclass lcl_vehicle exist in the subclass lcl_truck; the method estimate_fuel is also available in the subclass.

· The subclass defines a method get_cargo. It is not visible in the superclass.

[image: image7.wmf]ã

SAP

AG 2002

CLASS

lcl

_truck IMPLEMENTATION.

METHOD estimate_fuel.

...

super

-

>estimate_fuel(...)

ENDMETHOD.

ENDCLASS.

Redefining Methods

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

METHODS estimate_fuel

IMPORTING

im

_distance TYPE

ty

_distance

RETURNING VALUE(re_fuel) TYPE

ty

_fuel.

ENDCLASS.

CLASS

lcl

_truck DEFINITION INHERITING FROM

lcl

_vehicle.

PUBLIC SECTION.

METHODS estimate_fuel

REDEFINITION

.

...

ENDCLASS.

Cannot change

the interface

New

implementation of

method

Always points to the

superclass

component

· The REDEFINITION statement for the inherited method must be in the same SECTION as the definition of the original method. (It can therefore not be in the PRIVATE SECTION, since a class's private methods are not visible and therefore cannot be redefined in subclasses).

· If you redefine a method, you do not need to enter its interface again in the subclass, but only the name of the method. The reason for this is that ABAP Objects does not support overloading.

· In the case of redefined methods, changing the interface (overloading) is not permitted; exception: Overloading is possible with the constructor.

· Within the redefined method, you can access components of the direct superclass using the SUPER reference.

· To implement a redefined method in a subclass, you often need to call the method of the same name in the immediate superclass. In ABAP Objects you can call the method from the superclass using the pseudo-reference super:
The pseudo-reference super can only be used in redefined methods.
[image: image8.wmf]ã

SAP

AG 2002

Inheritance and Redefining the Constructor

CLASS

lcl

_

vehicle

DEFINITION.

PUBLIC SECTION.

METHODS:

constructor

IMPORTING

im_

make

TYPE

string

.

ENDCLASS.

CLASS

lcl

_

truck

DEFINITION INHERITING FROM

lcl

_

vehicle

.

PUBLIC SECTION.

METHODS:

constructor

IMPORTING im_

make

TYPE

string

im_

cargo

TYPE

ty

_

cargo

.

PRIVATE SECTION.

DATA:

max

_

cargo

TYPE

ty

_

cargo

.

ENDCLASS.

CLASS

lcl

_

vehicle

IMPLEMENTATION.

METHOD CONSTRUCTOR.

make

= im_

make

.

ENDMETHOD.

ENDCLASS.

CLASS

lcl

_truck IMPLEMENTATION.

METHOD constructor.

CALL METHOD

super

-

>constructor(

im

_make =

im

_make).

max_cargo =

im

_cargo.

ENDMETHOD.

ENDCLASS.

Can change the

interface

Call constructor of immediate

superclass

· The constructor of the superclass must be called within the constructor of the subclass. The reason for this is the special function of the constructor: To ensure that objects are initialized correctly. Only the class itself, however, can initialize its own (private) components correctly; this task cannot be carried out by the subclass. Therefore it is essential that all (instance) constructors are called in an inheritance hierarchy (in the correct sequence).

· For static constructors, unlike instance constructors, the static constructor in the superclass is called automatically, that is the runtime system automatically ensures that the static constructors of all its superclasses have already been executed before the static constructor in a particular class is executed.

[image: image9.wmf]ã

SAP

AG 2002

DATA: r_2 TYPE REF TO

lcl

_2,

r_3 TYPE REF TO

lcl

_3.

CREATE OBJECT r_2 EXPORTING

im

_a1 = 100.

CREATE OBJECT r_3 EXPORTING

im

_a1 = 100

im

_a2 = 1000.

Rules for Calling the Constructor

l

Case 1:

Class of instance to be created

has

constructor

Þ

Fill its parameters

l

Case 2:

Class of instance to be created

has

no

constructor

Þ

Search for the next

superclass

with a constructor

in the inheritance tree

Þ

Fill its parameters

lcl

_1

a1

constructor

(

im

_a1:i)

lcl

_2

lcl

_3

a2

constructor

(im_a1, im_a2)

· The model described for instance constructors must also be taken into account for CREATE OBJECT.

· There are two main methods of creating an instance of a class using CREATE OBJECT:

· 1. The class has a defined (and implemented) instance constructor

· In this case, when you are using CREATE OBJECT, the parameters have to be filled according to the constructor interface, that is, optional parameters may, and non-optional parameters must be filled with actual parameters. If the constructor does not have any (formal) parameters, no parameters may or can be filled.

· 2. The instance constructor for that class has not been defined

· In this case, you must search the inheritance hierarchy for the next highest superclass in which the instance constructor has been defined and implemented. Then, when you are using CREATE OBJECT, the parameters of that class must be filled (similarly to the first method above).
If there is no superclass with a defined instance constructor, then no parameters may or can be filled.

· If no instance constructor has been defined for a class, then a default constructor, which is implicitly always present is used. This default constructor calls the constructor from the immediate superclass.

[image: image10.wmf]ã

SAP

AG 2002

CLASS

lcl

_vehicle DEFINITION.

PUBLIC SECTION.

...

PROTECTED SECTION.

DATA tank TYPE REF TO

lcl

_tank.

PRIVATE SECTION.

DATA make TYPE string.

ENDCLASS.

Inheritance and Visibility

l

Public components

n

Visible to all

n

Direct access

l

Protected components

n

Only visible within the class

and its subclasses

l

Private components

n

Only visible within the class

n

No access from outside the

class,

not even from the subclass

lcl

_vehicle

-

make

-

modell

#

tank

...

+constructor

+display_attributes

+

get_count

+ public

protected

-

private

· Inheritance provides an extension of the visibility concept: There are protected components. The visibility of these components lies between that of the public components (visible to all users, all subclasses, and the class itself), and private (visible only to the class itself). Protected components are visible to and can be used by all subclasses and the class itself.

· Subclasses cannot access the private components (particularly attributes) of the superclass. Private components are genuinely private. This is particularly important if a (super)class needs to make local enhancements to handle errors: It can use private components to do this without knowing or invalidating subclasses.

· In ABAP Objects, you must keep to the section sequence PUBLIC, PROTECTED, PRIVATE.

[image: image11.wmf]ã

SAP

AG 2002

(5)

lcl

_bus

Private

Public

Protected

Can be addressed

"from outside" for

all clients

Can only be

addressed within

the class

Inherited

tank

get_make

set_make

get_count

display_attributes

estimate_fuel

Inherited

Visibility of Protected Components

· In this example, lcl_bus, a subclass of lcl_vehicle, can directly access the protected attribute tank. If the attribute was private, the subclasses would only be able to access tank using non-private methods.

[image: image12.wmf]ã

SAP

AG 2002

Rules for Redefining Methods

l

Inherited methods can be redefined in subclasses

n

Redefined methods must be re

-

implemented in subclasses

n

The signature of redefined methods cannot be changed

n

Static methods cannot be redefined

n

In inheritance, static components are "shared":

A class shares its non

-

private static attributes with all its subclasses

lcl

_

vehicles

lcl

_

car

lcl

_

truck

lcl

_

bus

estimate

_

fuel

The method is implemented in different ways

estimate

_

fuel

estimate

_

fuel

estimate

_

fuel

· In ABAP Objects, you can not only add new components, but also provide inherited methods with new implementations. This is known as redefinition. You can only redefine (public and protected) instance methods, other components (static methods, attributes and so on) cannot be redefined. Changes to method parameters (signature changes) are not possible.

· In UML, the redefinition of a method is represented by listing the method again in the subclass. Methods (and all other components) that are inherited but not redefined are not listed in the subclass, as their existence there is clear from the specialization relationship.

· You should not confuse redefinition with "overloading". The latter describes the ability of a class to have methods with the same name but a different signature. This is not available in ABAP Objects.

· There is only one static event per roll area. In this way, a class that defines a public or protected static attribute shares this attribute with all its subclasses. The significant point here is that subclasses do not each receive their own copy of the static attribute.

[image: image13.wmf]ã

SAP

AG 2002

Redefining Methods: Example

METHOD

estimate

_fuel.

DATA: total_

weight

...

* just an example!

total_

weight

= max_cargo +

weight.

re

_

fuel

= total_

weight

*

im_

distance

*

factor

.

ENDMETHOD.

METHOD

estimate

_fuel.

DATA: total_

weight

...

* just an example!

total_

weight

= max_passengers *

average

_

weight

+

weight

.

re

_

fuel

= total_

weight

*

im_

distance

*

factor

.

ENDMETHOD.

lcl_bus

-

max_passengers

...

+ constructor

+ estimate_fuel

lcl_truck

-

max_cargo

...

+ constructor

+ estimate_fuel

· In the above example, both redefined methods calculate the return code in different ways. The important point is that the semantics stay the same.

[image: image14.wmf]ã

SAP

AG 2002

l

Define an inheritance relationship between

classes

l

Redefine methods

You are now able to:

Inheritance: Unit Summary

 Inheritance

Exercises

	[image: image15.png]

	Unit: Inheritance

Topic: Creating Class Hierarchies

	[image: image16.png]

	At the conclusion of these exercises, you will be able to:

· Define subclasses

· Redefine superclass methods in subclasses

	[image: image17.jpg]

	Model solution:
SAPBC401_INHS_MAIN_A

SAPBC401_INHS_A include program

Your program:
ZBC401_##_MAIN_AIRPLANE

ZBC401_##_AIRPLANE include program

1-1
Make both instance attributes of the class lcl_airplane visible to their subclasses (PRIVATE SECTION -> PROTECTED SECTION).

1-2
Create the subclass lcl_passenger_plane for the class lcl_airplane. Also, create this subclass in your include program.

1-2-1
The class is to have a private instance attribute max_seats with the same type as table field sflight-seatsmax.

1-2-2
A public constructor is to be defined and implemented in the class. This constructor provides all instance attributes in the class with values.

1-2-3
Redefine the method display_attributes of the class lcl_airplane, so that, using the redefined method, the WRITE statement displays all instance attributes.

1-3
Create the subclass lcl_cargo_plane for the class lcl_airplane. Also, create this subclass in your include program.

1-3-1
The class is to have a private instance attribute max_cargo with the same type as the table field scplane-cargomax.

1-3-2
A public constructor is to be defined and implemented in the class. This constructor provides all instance attributes in the class with values.

1-3-3
Redefine the method display_attributes of the class lcl_airplane, so that, using the redefined method, the WRITE statement displays all instance attributes.

1-4
Switch to your main program.

1-4-1
Use the DATA statement to create a reference for each subclass (lcl_passenger_plane, lcl_cargo_plane).

1-4-2
Call the static method display_n_o_airplanes (before instantiating any objects).

1-4-3
Use the two references to create one instance each of the subclasses lcl_passenger_plane and lcl_cargo_plane. Decide for yourself how to fill the attributes.

1-4-4
Call the display_attributes method for both instances.

1-4-5
Call the static method display_n_o_airplanes a second time.

1-5
Follow the program flow in the Debugger, paying special attention to the call of display_attributes.

1-6
Can the method get_technical_attributes be called directly from the redefined method display_atributes of the subclass?
1-7
Is it necessary for the subclasses to directly access the attributes name and planetype of the superclass to initialize them?

Or, to formulate it differently:
If these attributes remained in the private visibility area of the superclass, how would the subclasses have to access the attributes?

 Inheritance Solutions
	[image: image18.png]

	Unit:
Inheritance

Topic:
Creating Class Hierarchies

&---

*& Report SAPBC401_INHS_MAIN_a *

&---

*& the classes lcl_passenger_plane and lcl_cargo_plane are *
*& instantiated. Inheritance is shown *
&---

REPORT sapbc401_inhs_main_a.
INCLUDE <icon>.
INCLUDE sapbc401_inhs_a.
DATA: r_plane TYPE REF TO lcl_airplane,
 r_cargo type ref to lcl_cargo_plane,
 r_passenger type ref to lcl_passenger_plane,
 plane_list TYPE TABLE OF REF TO lcl_airplane.
START-OF-SELECTION.
*##############################

 lcl_airplane=>display_n_o_airplanes().
 CREATE OBJECT r_passenger EXPORTING
 im_name = 'LH BERLIN'
 im_planetype = '747-400'
 im_seats = 345.
 CREATE OBJECT r_cargo EXPORTING
 im_name = 'US HErcules'
 im_planetype = '747-500'
 im_cargo = 533.
 r_cargo->display_attributes().
 r_passenger->display_attributes().
 lcl_airplane=>display_n_o_airplanes().
&---

*& Include SAPBC401_INHS_a *
&---

--

* CLASS lcl_airplane DEFINITION *
--

*...

* CLASS lcl_cargo_plane DEFINITION

*

CLASS lcl_cargo_plane DEFINITION INHERITING FROM lcl_airplane.
 PUBLIC SECTION.
 "----------------------

 METHODS: constructor IMPORTING im_name TYPE string
 im_planetype TYPE saplane-planetype
 im_cargo TYPE scplane-cargomax.
 METHODS: display_attributes REDEFINITION.
 PRIVATE SECTION.
 "----------------------

 DATA: max_cargo TYPE scplane-cargomax.
ENDCLASS. "lcl_cargo_plane DEFINITION

* CLASS lcl_cargo_plane IMPLEMENTATION

*

CLASS lcl_cargo_plane IMPLEMENTATION.
 METHOD constructor.
 CALL METHOD super->constructor(im_name = im_name
 im_planetype = im_planetype).
 max_cargo = im_cargo.
 ENDMETHOD. "constructor
 METHOD display_attributes.
 super->display_attributes().
 WRITE: / 'Max Cargo = ', max_cargo.
 ULINE.
 ENDMETHOD. "display_attributes
ENDCLASS. "lcl_cargo_plane IMPLEMENTATION

* CLASS lcl_passenger_plane DEFINITION

*

CLASS lcl_passenger_plane DEFINITION INHERITING FROM lcl_airplane..
 PUBLIC SECTION.
 METHODS: constructor IMPORTING im_name TYPE string
 im_planetype TYPE saplane-planetype
 im_seats TYPE sflight-seatsmax.
 METHODS: display_attributes REDEFINITION.
 PRIVATE SECTION.
 DATA: max_seats TYPE sflight-seatsmax.
ENDCLASS. "lcl_passenger_plane DEFINITION

* CLASS lcl_passenger_plane IMPLEMENTATION

*

CLASS lcl_passenger_plane IMPLEMENTATION.
 METHOD constructor.
 CALL METHOD super->constructor(im_name = im_name
 im_planetype = im_planetype).
 max_seats = im_seats.
 ENDMETHOD. "constructor
 METHOD display_attributes.
 super->display_attributes().
 WRITE: / 'Max Seats = ', max_seats.
 ULINE.
 ENDMETHOD. "display_attributes
ENDCLASS. "lcl_passenger_plane IMPLEMENTATION
© SAP AG
TAW10
7-20

