
0 [image: image35.png]

[image: image2.wmf]ã

SAP

AG 2002

l

Use elementary data objects and structures

appropriately

l

Use numeric data types appropriately

l

Use automatic type conversions appropriately

l

Take the special features of character string

processing in Unicode into account

At the conclusion of this unit, you will be able to:

Data Types and Data Objects in Detail:

Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Special Features in Unicode

Special Features in Unicode

Elementary Data Objects

Elementary Data Objects

Structures

Structures

Data Types and Data Objects in Detail (1)

Introduction

Introduction

[image: image4.wmf]ã

SAP

AG 2002

Revision: Defining Data Objects

Predefined

ABAP types

x

Local types

i

f

string

xstring

t

d

Global

types

c

n

p

TYPES type_name TYPE ...

DATA do_

name

TYPE

type

_

name

.

DATA

DATA

DATA do_name_new LIKE do_name.

DATA

DATA

· Data objects are usually defined with the DATA statement as follows. After the name of the data object, a a fully-specified type is assigned to it using the TYPE addition. The type is linked to the data object statically and cannot be changed at runtime.
· There are other syntax variants available (for historical reasons). Note however, that some of these historical variants are no longer supported in ABAP Objects. For further information, refer to the keyword documentation for the DATA statement.
· All types are based on predefined ABAP types, which will be discussed in greater detail in the following slide. Some of these ABAP types are fully specified and can be used to type data objects directly. Other types need to be modified to include the length, and in some cases the number of decimal places so that they are fully specified. These are the simplest examples of user-defined types.

· You can create complex structured types of any level of complexity, based on elementary types.

· You can also define types centrally in the ABAP Dictionary. You can then use these global types in all appropriate Repository objects in the system.

[image: image5.wmf]ã

SAP

AG 2002

string

Predefined ABAP Types

p

i

f

n

c

d

t

x

xstring

Data

type

Numeric

4

8

1 .. 16

Integer

Float. point number

Packed number

Character string type / hexadecimal

Fixed length

Description

Length in bytes

Number sequence

Character sequence

Date

Time

Hexadecimal code

Character sequence

Hexadecimal code

1 .. 65535

1 .. 65535

8

6

1 .. 65535

Differ in:

•

Rules for storage

•

Value range

•

Arithmetic used

Bit operations

Character string type

Hexadecimal

Runtime system adjusts length

dynamically

Character string operations

(allowed for all types)

+ date calculations

+ time calculations

Attributes

Variable

length

· The following ABAP types are fully specified and can be used directly to type data objects: d, t, i, f, string, and xstring. A special feature of the string and xstring types is that their length is adjusted dynamically at runtime. Thus, for these two types, length is not a component of the type.
· The following ABAP types are not fully specified, so you must include additional information before you use them to define data objects:

· c, n, and x
Length needs to be added. Permitted values: 1 to 65535 characters.
If you do not declare a length when you define a data object, the system assigns the default length of 1.

· p
You must extend the type to include the length, and number of decimal places, Permitted length: 1 to 16 bytes. If you do not declare a length when you define a data object, the system assigns the default length of 8 bytes (that is, 15 digits) and 0 decimal places.

· The type also contains information on how the data is stored, what range of values is allowed, what operations can be performed on the data, and what sort of arithmetic is used (if the data object is suitable for use in calculations). We will deal with this topic in greater detail later in this unit.
[image: image6.wmf]ã

SAP

AG 2002

Type Groups in the ABAP Dictionary

Type group

zmytp

TYPE

-

POOL

zmytp

.

CONSTANTS

zmytp

_

const

_name ...

[TYPES

zmytp

_type_name1 ...

]

[TYPES

zmytp

_type_name2 ...

]

...

Using a constant:

TYPE

-

POOLS:

zmytp

.

[DATA

var

TYPE

zmytp

_type1.

]

IF

var

=

zmytp

_

const

_name.

...

ENDIF.

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

zmytp

Name of type group:

Up to 5 characters;

each type name and

constant name

starts with the name of

the type group.

TYPE

TYPE

-

-

POOLS

POOLS

Each type group, whose

types and constants you

want to use, must be specified

in the ABAP program

ABAP program

zmytp

zmytp

· You must use a type group to define global constants. The name of the type group can contain up to 5 characters.
· You define constants in the type group using the CONSTANTS statement, just as in an ABAP program. You only have to adhere to the following namespace convention:
All constants (and type names) must have the name of the type group as a prefix.
You can use either a global Dictionary type or a predefined ABAP type as a valid type.
· To be able to use the types of a type group in a program, you must refer to the type group using the TYPE-POOLS statement.
After this line in the program, you can then use all the constants in the type group.

· You can also define global data types in a type group. Before SAP R/3 Basis Release 4.5, this was the only way to define complex global data types.
[image: image7.wmf]ã

SAP

AG 2002

Data Types and Data Objects in Detail (2)

Special Features in Unicode

Special Features in Unicode

Elementary Data Objects

Elementary Data Objects

Structures

Structures

Introduction

Introduction

[image: image8.wmf]ã

SAP

AG 2002

Integer auxiliary variable

1

int2 = 4 int3 = 3 int4 = 2

2

4

3

+

=

/

2

+

3

=

=

int1

Integers and Integer Arithmetic

+

-

*

/

DIV

MOD

**

Addition

Subtraction

Multiplication

Division

Integer division

Remainder integer div.

Power

Arithmetic operations for

integers:

int1 = int2 / int3 + int4.

DATA: counter TYPE i VALUE 1.

l

Length: 4 bytes

l

Value range [

-

2147483648; 2147483647]

l

Integer Arithmetic

§

All internal auxiliary fields are integers

§

Interim results are rounded

· In integer arithmetic, the system always rounds to the appropriate decimal place. So, for example:
DATA int TYPE i. int = 4 / 10. " result: 0
 int = 5 / 10. " result: 1
· Calculations performed using integer arithmetic are faster than calculations using fixed point or floating point arithmetic.

· For further information on calculations performed on integers, refer to the keyword documentation for the COMPUTE statement.

[image: image9.wmf]ã

SAP

AG 2002

Packed Numbers and Fixed Point Arithmetic

0

1

2

3

4

+

1 digit per

half

-

byte

Sign

DATA: percentage(3) TYPE p DECIMALS 2 VALUE '12.34'.

(3)

(3)

DECIMALS 2

DECIMALS 2

Length in bytes:

n bytes correspond to

2n

-

1 digits

Number of decimal

places

12,34

Number

Fixed point arithmetic:

"like using paper and pencil"

l

Permitted length: 1 to 16 bytes (= 1 to 31 digits)

l

Number of decimal places < number of digits, max. 15

l

Example: Length 3 bytes, 2 decimal places

Þ

Value range: [

-

999.99,+999.99]

Internal representation

1234,56

+ 78,5

1313,06

· The length of packed numbers is given in bytes. The connection between value range and length is derived from the internal representation: Each decimal digit is represented by a half-byte. The last byte is reserved for the plus or minus sign.

· The number of decimal places is defined using the DECIMALS addition. The maximum number of decimal places is either 15 or the length of the number minus 1 (that is, there must be at least one digit before the comma).

· In user dialogs, decimal numbers are formatted according to the settings in the user master record.

· Decimal point-aligned fixed point arithmetic is used as default for calculations. Packed numbers are thus well-suited to business calculations, where the correct rounding for the specified number of decimal places is very important. The algorithm for this arithmetic is similar to using "pencil and paper".

· The system always uses packed numbers of maximum length for interim results.

· You can switch off fixed point arithmetic in the program attributes. If you do, the DECIMALS addition when defining a packed number only affects the output of the number. Internally, all numbers are interpreted as integers, regardless of the position of the decimal point. The fixed point arithmetic option is always selected by default. You should always accept this value and use packed numbers for business calculations.

[image: image10.wmf]ã

SAP

AG 2002

L

L

L

L

L

L

L

1499023437

,

0

1494140625

,

0

1484375

,

0

140625

,

0

125

,

0

2048

1

1024

1

128

1

64

1

8

1

2

1

2

1

2

1

2

1

2

1

15

,

0

2

1

2

1

2

1

5

,

1

11

10

7

6

3

1

0

1

=

+

=

+

=

+

=

+

=

+

+

+

+

+

=

+

×

+

×

+

×

+

×

+

×

=

+

=

×

+

×

=

-

-

-

-

-

-

Floating Point Arithmetic

|

|

|

|

|

|

|

0

0

0

0

. . .

Only 53 bits available

»

Only for

approximations

· Unlike packed numbers, floating point numbers are represented using sums of binary fractions. Floating point numbers are also normalized, and both the exponent and the mantissa are stored in binary form. This representation complies with the IEEE norm for double precision floating point numbers. The floating point operations of the relevant processors are used for calculations.
Since algorithms are converted to binary, inaccuracies can occur. Therefore, floating point numbers are not suitable for business calculations.

Example:
You want to calculate 7.72% of 73050 and display the result accurate to two decimal places. The answer should be 5310.74 (73050 * 0.0727 = 5310.7735). The program, however:
DATA: float TYPE f, pack TYPE p DECIMALS 2.
float = 73050 * '0.0727'. " result: 5.3107349999999997E+03
pack = float. WRITE pack. " result: 5310.73
· You should therefore only use floating point numbers for approximations. When you compare numbers, always use intervals, and always round at the end of your calculations.

· The advantage of floating point numbers is the large value range: It comprises numbers from is, from 2,2250738585072014E-308 to 1,7976931348623157E+308 including both positive and negative numbers as well as zero. In addition, you must use floating point numbers for special aggregation functions of the SELECT statement.

[image: image11.wmf]ã

SAP

AG 2002

Summary:

Recommendations for Using Numeric

Data Types

Required:

Required:

Recommended predefined ABAP data type:

Recommended predefined ABAP data type:

Integers only

Type i,

since calculations using integer arithmetic are

fastest

Decimal numbers for

business calculations

Type p

Decimal numbers for

rough calculations

performed on very small

or very large numbers

Type F

· Note:

The results of the following functions have the data type f:

· Trigonometric functions: cos, acos, sin, asin, tan, atan

· Hyperbolic functions: tanh, sinh, cosh
· Exponential functions (base e): exp
· Natural logarithms (base e): log
· Logarithms (base 10): log10
· Square root: sqrt

[image: image12.wmf]ã

SAP

AG 2002

Arithmetic and Mixed Expressions

c

a

b

r

=

/

+

p DECIMALS 3

i

i

f

0.0000...E+000

201

200

/

+

®

Float. point arithmetic

�

¯

Conversion after f

and calculation

‚

0.0000...E+000

1.004999...E+000

Interim result:

+

=

1.004999...E+000

¯

Conversion after

p DECIMALS 3

ƒ

1.005

l

Fixed point arithmetic is the default

l

Integer arithmetic is only used if

all

the components are integers

l

Floating point arithmetic is used if

at least one

component is a floating point number

l

All components are converted to the relevant data type

l

After the calculation, all are converted to the result type

Example:

· An arithmetic expression may contain any data types that are convertible into each other and into the type of the result field.

· The system converts all the values into one of the three numeric data types (i, p, or f), depending on the data types of the operands. The ABAP runtime system contains an arithmetic for each of the three data types. The system then performs the calculation and converts it into the data type of the result field.

· This may mean that the same arithmetic expression leads to different results when performed on different combinations of data types.

· It is also possible for an arithmetic expression to have only character string type data objects, as long as their contents are appropriate. The values are converted to numeric type objects. Bear in mind that conversions affect performance. Wherever possible, choose a data type that does not require runtime conversion.

· If an arithmetic expression contains numeric literals, the choice of arithmetic depends on the size of the number: If the number is within the value range for the data type i, the numeric literal is interpreted as an integer. If the value of the literal is greater than 2147483647, it is interpreted as a packed number.
Example:
DATA int TYPE i. int = 1000000000 / 300000000 * 3. "result: 9
 int = 10000000000 / 3000000000 * 3. "result: 10

[image: image13.wmf]ã

SAP

AG 2002

Predefined ABAP Types for Character Strings

Description

Length

Value range

Calculations

Formatting

options

1 ..

1 ..

65535

65535

characters

characters

1 ..

65535

characters

8 digits

YYYYMMDD

6 digits

HHMMSS

Depends on

Depends on

codepage

codepage

By Gregorian

calendar

By clock

Type

Type

c

c

Type

n

Type

d

Type

t

Time

Date

Sequence

of digits

Fixed

Fixed

-

-

length

length

char. string

char. string

Date

arithmetic

Time

arithmetic

Based on

user default

values

HH:MM:SS

Digits

Variable

Variable

Type

Type

string

string

Char. string

Char. string

of variable

of variable

length

length

Conversion

Conversion

Conversion

Conversion

· The value range of each string depends on the code page, which contains all the supported characters in form of a table. Internally, each character is represented by a code number. When the system outputs the character, it uses the code page to convert this number. To find the code page valid in a given system, choose Tools CCMS  Spool Administration  Full Administration  Character Sets.

· The initial value of each character string with fixed length is a space character.

· Numeric strings are represented internally as character strings. Note, however, that only digits are permissible as characters. When character strings are assigned to numeric strings, the system ignores letters and only copies the digits (right-aligned). Missing characters are filled with zeros.

· The initial value of each character in a numeric string is a zero.

· Only sequences of digits are valid for values of type d. These digits form a meaningful date, which complies with the Gregorian calendar. The first four digits represent the year, the next two the month and the last two the date. For performance reasons however, the object is only checked if it is an input field on a screen or selection screen.

· The initial value of a date is '000000'. The formatting options are determined by the user settings.

· For values of type t, a sequence of digits is only valid if it can be interpreted as a time on the 24-hour clock. The rules for interpreting the value are analogous to those used for dates.

· The initial value of a time is '000000'.

[image: image14.wmf]ã

SAP

AG 2002

Overview: Character String Processing

REPLACE

REPLACE

TRANSLATE

TRANSLATE

SHIFT

SHIFT

CONDENSE

CONDENSE

FIND

FIND

SPLIT

SPLIT

CONCATENATE

CONCATENATE

+

OVERLAY

OVERLAY

Description and notes

Search in a character string

Replace

Move

Remove space characters

Overwrite : Spaces are overwritten

by characters from the second

character string

Concatenate several

character strings

Split a character string

A B A P

A B A P

a b a p

A B A P

B A P

B B A P

A P

A P

A B

A B A P

A P

A B P

A B A P

A B

A P

A A A A

Search in a character string

Search in a character string

Replace first occurrence

Replace first occurrence

Move

Move

Remove

Remove

Overwrite

Overwrite

Concatenate

Concatenate

Split

Split

Replace all occurrences

Replace all occurrences

A B C A P

A B A P

B

?

Found:

sy

-

subrc

= 0

Position of search string

using

MATCH

OFFSET

off

addition

· Note for FIND statement (search in a character string):
There are special comparison operators for strings, which you can use in logical expressions in a query (IF) to search more flexibly for character sequences in a character string. For more information, see the keyword documentation for IF.

· For every statement, the operands are treated like type c fields, regardless of their actual field type. No internal type conversions take place.

· All of the statements apart from TRANSLATE and CONDENSE set the system field sy-subrc. (SEARCH also sets the system field sy-fdpos with the offset of the character string found.)

· All of the statements apart from SEARCH are case-sensitive.

· To find out the occupied length of a string, use the standard function STRLEN().
· For the SPLIT statement there is the variant SPLIT ... INTO TABLE <itab>, which you can use to split the character string dynamically. You do not need to specify the number of parts into which the string should be split.

[image: image15.wmf]ã

SAP

AG 2002

Accessing Parts of Fields

<statement> <field>+<off>(<

len

>) ...

REPORT ...

PARAMETERS:

pa

_

str

(40) LOWER CASE,

pa

_

pos

TYPE i,

pa

_

len

TYPE i.

WRITE

pa

_

str

+

pa

_

pos

(

pa

_

len

)

.

19991231ttA235959

000000

Possible with any

character

-

type field

+

+

pa

pa

_

_

pos

pos

(

(

pa

pa

_

_

len

len

)

)

· In any statement that operates on a character-type field, you can address part of the field or structure by specifying a starting position and a number of characters. If the field lengths are different, the system either truncates the target or fills it with initial values. The source and target fields must have the type x, c, n, d, t, or STRING. You can also use structures.
Example

MOVE <field1>+<off1>(<len1>) TO <field2>+<off2>(<len2>).

This statements assigns <len1> characters of field <field1> starting at offset <off1> to <len2> characters of <field2> starting at offset <off2>.

[image: image16.wmf]ã

SAP

AG 2002

Special Features in Unicode

Special Features in Unicode

Elementary Data Objects

Elementary Data Objects

Structures

Structures

Data Types and Data Objects in Detail (3)

Introduction

Introduction

[image: image17.wmf]ã

SAP

AG 2002

Defining Structures with Local Types

TYPES:

BEGIN OF s_name_type,

prename(25) TYPE c,

surname(25) TYPE c,

title(5) TYPE c,

END OF s_name_type.

DATA:

s_name TYPE s_name_type .

DATA:

BEGIN OF s_

name

,

prename

(25) TYPE c,

surname

(25) TYPE c,

title(5) TYPE c,

END OF s_

name

.

DATA:

DATA:

TYPES:

TYPES:

BEGIN OF

BEGIN OF

END OF

END OF

BEGIN OF

BEGIN OF

END OF

END OF

DATA:

DATA:

START

-

OF

-

SELECTION.

s_name

-

prename

= 'Smith'.

s_name

-

surname

= 'John'.

s_

name

s_

name

s_

name

s_

name

Alternatives

s_

name

_

type

s_

name

_

type

s_

name

-

-

Definition of a structure type

Definition of a structure with

reference to a user

-

defined type

Definition of a structure with

implicit type construction

· As with elementary data objects, you can define structures in two ways:

· First, define a structure type explicitly using the TYPES statement.
To do this, enter the name of the structure after BEGIN OF and then list the definitions of all the components. End the definition of the structure type using END OF.
You then define the structured data object with the DATA statement, using your own user-defined structure type.

· Define the data object directly using the DATA statement. The syntax is similar to the definition of a structure type. If you use this option, the corresponding structure type is defined implicitly at the same time.

· In both cases, the type is defined locally. Bear in mind that you can also use globally defined types instead.

· You address components of structures using:
structure_name-comp_name.
For this reason, you should avoid using hyphens in variable names.

[image: image18.wmf]ã

SAP

AG 2002

Defining Nested Structures with Local Types

Nested structure

Nested structure

Structure type

Structure type

name

street

city

prename

surname

title

s_

address

s_

name

_

type

prename

surname

title

TYPES:

BEGIN OF s_name_type,

prename(25) TYPE c,

surname(25) TYPE c,

title(5) TYPE c,

END OF s_name_type.

DATA:

BEGIN OF s_address,

name TYPE s_name_type,

street(15) TYPE c,

city(25) TYPE c,

END OF s_address.

s_address

-

name

-

surname = 'Smith'.

s_address

-

city = 'London'.

s_name_type

-

-

-

-

-

-

s_name_type

Application:

Logical

subgrouping

of data

· You can define nested structures by assigning a structure type to a component within a structure type.

· You can address this substructure as a whole using the component name:
structure_name-substructure_name.
· You can also address individual components in the substructure:
structure_name-substructure_name-comp_name.
· Structures can be nested to any level you wish.

· You can also integrate components of a dynamic type in a structure. This can either be an elementary data object of variable length (string or xstring),an internal table, or a reference. These structures are known as deep structures.

· There are constraints on how such deep structures can be used. For instance, a deep structure cannot be used as a whole in the INTO clause of the SELECT statement. (Instead, each component must be listed separately). Offset operations are also not appropriate. For more information, refer to SAP Note 176336.

[image: image19.wmf]ã

SAP

AG 2002

Using Named Includes

DATA:

BEGIN OF t_

linetype

,

prename

(25) TYPE c,

surname(25) TYPE c,

title(5) TYPE c,

END OF s_name_type.

DATA

BEGIN OF s_address.

INCLUDE STRUCTURE s_name_type

AS name.

DATA:

street(15) TYPE c,

city(25) TYPE c,

END OF s_address.

s_address

-

name

-

surname = 'Smith'.

* or:

s_address

-

surname = 'Smith'.

s_

name

_

type

s_

name

_

type

INCLUDE STRUCTURE

INCLUDE STRUCTURE

AS

AS

Structure with named include

Structure with named include

Structure type

Structure type

street

city

prename

surname

title

s_

address

s_

name

_

type

prename

surname

title

name

-

-

-

-

-

-

Use:

Logical subgroup desired, but nested

structures not technically possible

· In some cases, you cannot use nested structures, for example:

· Because you can only define database tables with flat line types

· In situations where user dialogs with a table-type display can only contain simple structures (such as in the SAP List Viewer or Table Control)

· In situations like these, you may still want to group parts of the structure and address it as a whole. You do this using named includes:

· You can include a substructure in another structure, and give this substructure a name:
DATA: BEGIN OF structure_name,

INCLUDE STRUCTURE substructure_type AS name.
DATA: ... ,
 END OF structure_name.

· You can address this substructure using structure_name-name. You can address the fields in the substructure using structure_name-name-comp_name or directly using structure_name-comp_name. Technically, however, this structure is not nested.

· If naming conflicts occur - for example, if you want to include the same substructure twice - you can append another name to the component names using RENAMING. For further information, refer to the keyword documentation for the INCLUDE STRUCTURE statement.

[image: image20.wmf]ã

SAP

AG 2002

Special Features in Unicode

Special Features in Unicode

Elementary Data Objects

Elementary Data Objects

Structures

Structures

Data Types and Data Objects in Detail (4)

Introduction

Introduction

[image: image21.wmf]ã

SAP

AG 2002

Unicode: Overview

Solution:

Unicode

l

ONE

codepage

that

comprises all known

characters

l

Every character is generally

displayed by two bytes

a

ю

ق

й

S

a

Unicode

Unicode

Previous problems

l

Mixture of different incompatible character sets in one central

system

l

Data exchange between systems with incompatible character sets

· To be able to work with Unicode, you must have a Unicode-compatible SAP System installed that itself has a corresponding operating system and database. The ABAP programs must also be Unicode-compatible.

· In Unicode programs, other syntax rules apply than in non-Unicode programs. This is due to the difference between the length in bytes and the number of characters in a character set in Unicode. Existing programs are affected by a conversion to Unicode if an explicit or implicit assumption is made about the internal length of a character. To execute the relevant syntax checks, you must check Unicode Checks Active under program attributes.

· In a Unicode system, you can only execute programs that have the Unicode flag set. If the Unicode flag is set for a program, the syntax check and program are executed in accordance with the rules described in the Unicode online help (irrespective of whether it is a Unicode or a non-Unicode system).

· If the Unicode flag is not set, the program can only be executed in a non-Unicode system. For such programs, the Unicode-specific changes of syntax and semantics do not apply. However, you can use all language enhancements introduced in connection with the conversion to Unicode.

[image: image22.wmf]ã

SAP

AG 2002

Character

-

Type and Byte

-

Type Types

Character

-

type types in Unicode programs

d

t

string

xstring

x

c

n

Character

-

type

structure types

Difference between byte processing and character processing

DATA: c_

field

(4) TYPE c VALUE 'HUGO',

x_

field

(4) TYPE x VALUE 'E391B9A2'.

SHIFT c_

field

BY 2 PLACES [IN CHARACTER MODE].

SHIFT x_

field

BY 2 PLACES IN BYTE MODE.

c_field

x_

field

H U G O

E391B9A2

B9A20000

G O _ _

Only components

with the types

c

,

n

,

d

, and

t

byte

-

type

byte

-

type

· In Unicode programs, the following data types are interpreted as character-type:
c, n, d, t, string as well as structure types, that directly or in substructures only contain components with types c, n , d and t. In non-Unicode systems, a character of this type is one byte and in Unicode systems, it is as long as corresponds with the length of a character on the relevant platform. Variables of the types x and xstring are described as byte-type.

· The character string processing (for which, previously, all arguments were implicitly interpreted as type c fields) is separated into string processing for character-type and byte-type arguments.
· In the case of the string processing for character-type arguments, the single fields must be type c, n, d, t, or string; character-type structures are also permitted. If arguments of another type are transferred, this triggers a syntax or runtime error.

· The X variants of the string statement are distinguished from the character string commands by the IN BYTE MODE addition. For the character string variants, IN CHARACTER MODE is an optional addition. If the IN BYTE MODE addition is specified, only X fields and X strings are permitted as arguments. If arguments of another type are transferred, this triggers a syntax or runtime error.

[image: image23.wmf]ã

SAP

AG 2002

Functions and Comparison Operators

Functions

Character

-

type type

XSTRLEN

Byte

-

type type

Comparison

operators

Functions

STRLEN

CO, CA, CS, CP,

CN, NA, NS, NP

BYTE

-

CO, BYTE

-

CA,

BYTE

-

CS, BYTE

-

CN,

BYTE

-

NA, BYTE

-

NS

STRLEN

DATA: c_fld1(4) TYPE c VALUE 'HUGO',

c_fld2(1) TYPE c VALUE 'G'.

IF c_fld1 CA c_fld2.

...

ENDIF.

DATA: x_

field

(4) TYPE x

VALUE 'E391B9A2',

len

TYPE i.

len

= XSTRLEN(x_

field

).

Length in

bytes

Examples:

Length in

characters

· The operators CO, CN, CA, NA, CS, NS, CP, NP are available for comparing the contents of character string type data objects (for syntax and semantics, see keyword documentation). As with the statements for string processing, these operators require single fields of type c, n, d, t, or string as arguments. Again, character-type structures are also permitted.

· The X variants of the string comparison operators are distinguished from the character string variants by the BYTE- prefix. For this operation, only X fields and fields of the type xstring are allowed as arguments.

· The STRLEN function only works with character-type fields and returns the length in characters. With c fields, only the so-called occupied length is relevant, that is, unlike with strings, trailing blanks are not counted.

· The XSTRLEN function is available for the length of byte sequences. For X strings, XSTRLEN returns the current length and for X fields, the defined length in bytes, where null bytes at the end of fields are counted.

[image: image24.wmf]ã

SAP

AG 2002

Compatibility and Conversion

l

No conversion takes place if type

-

compatible data objects are assigned

l

If non

-

type

-

compatible data objects are assigned, conversion does take

place if a conversion rule is defined

When are two types compatible?

Two elementary types are compatible when they

have exactly the same type and

length

(and, in the

case of packed numbers, the same number of

decimal places

).

Two structure types are compatible when they have the

same structure

and their

components

are

.

Two table types are compatible if their

row types

are

compatible

and their

key definitions

and

table types

are the same.

type

type

length

length

decimal places

decimal places

same structure

same structure

components are compatible

components are compatible

row types

row types

key definitions

key definitions

table types

table types

are the same.

are the same.

MOVE a TO b.

b = a.

compatible

compatible

compatible

compatible

· If two data types are not compatible but there is a conversion rule, the system converts the source object into the type of the target object when you assign values, perform calculations, or compare values.

· For a full list of all conversion rules, refer to the ABAP syntax documentation for the MOVE statement.

· If there is no conversion rule defined for a particular assignment, the way in which the system reacts depends on the program context.

· If the types of the objects involved are defined statically, a syntax error occurs.
Example:
DATA: date TYPE d VALUE '19991231', time TYPE t.
FIELD-SYMBOLS: <fs_date> TYPE d, <fs_time> TYPE t.
ASSIGN: date TO <fs_date>, time TO <fs_time>.
<fs_time> = <fs_date>.

· In the case of dynamic typing a runtime error occurs, because the field symbols are not assigned types until the assignment of the data objects at runtime.

Example:
...
FIELD-SYMBOLS: <fs_date> TYPE ANY, <fs_time> TYPE ANY.
...
(Rest as above)

[image: image25.wmf]ã

SAP

AG 2002

Conversion Under Unicode (1)

Conversion between flat structures

struc2

MOVE struc1 TO struc2.

Decisive criterion:

Fragment view

I

X(3)

C(3)

C(4)

C(3)

C(4)

struc1

C(6)

N(4)

X(3)

N(4)

I

P(8)

struc1

struc2

P(8)

I

C(4)

X(3)

C(10)

Conversion between flat structures is possible if the fragments

of

the source and target structures match both in type and length i

n

the length of the shorter structure.

Under what condition

is this assignment

possible?

Assignment is possible

Ü

· For some data types there are, for technical reasons, specific alignment requirements that depend on the individual platforms. (In the memory, fields of this type must begin and end on specific addresses - for example, a memory address divisible by four.)

· Within a structure, the runtime system, if necessary, inserts bytes before or after these components with alignment requirements to achieve the alignment needed. These bytes are known as Alignment.

· To check whether the conversion is even permitted, the system first creates the Unicode fragment view of the structures by grouping adjacent components and alignment gaps (one group each for character-type types [c, n, d, t], byte-type types, and types i, f, and p).

· Adjacent character-type components of a structure are therefore only grouped together if there are no alignment gaps between these components. Adjacent byte-type components are grouped in the same way.

· If the fragments of the source and initial structures match the type and length in the length of the shorter structure, the conversion is allowed.

· If the target structure is longer than the source structure, the character-type components of the remainder are filled with space characters. All other components in the remainder are filled with the type-specific initial value, alignment gaps are filled with null bytes.

[image: image26.wmf]ã

SAP

AG 2002

Conversion Under Unicode (2)

Conversion between structures and single fields

struc

MOVE c_field TO

struc

.

X(3)

N(4)

C(6)

C(4)

c_field

C(9)

c_

field

struc

.

Under what condition

is this assignment

possible?

Assignment is possible

Ü

Decisive criterion:

Fragment view

Conversion between structures and single fields is possible if

the structure begins with a character

-

type fragment and this

fragment is at least as long as the single field.

The following rules apply for the conversion of a structure to a single field and vice versa:

· If the single field is type c, but the structure isn't completely character-type, the conversion is only allowed if the structure begins with a character-type group and this group is at least as long as the single field. The conversion then takes place between the first character-type group of the structure and the single field. If the structure is the target field, the character-type parts of the remainder are filled with space characters and all other components with the type-specific initial value.

· The conversion is not allowed if the structure is not purely character-type and the single field is not type c.

Internal tables can be converted if their row type can be converted.

[image: image27.wmf]ã

SAP

AG 2002

Example of Using the Conversion Rules

PARAMETERS p_date LIKE

sy

-

datum.

DATA: BEGIN OF s_date,

year(4) TYPE n,

month(2) TYPE n,

day(2) TYPE n,

END OF s_date.

MOVE p_date TO s_date.

s_date

-

day = '01'.

MOVE s_date TO p_date.

p_date

s_date

Character

-

type

single field

Character

-

type

structure

l

Since the structure

s_date

is purely character

-

type, it is treated like

a type c data object during conversion.

l

This means it is transferred left

-

aligned, character by character.

· s_date is structured in such a way that the first four characters of a variable specify the year, the next two specify the month, and the last two the day. If a date is assigned to this structure using the MOVE statement, the characters are then copied left-aligned. You can then determine the year, month, and day directly using the components of the structure, without having to use offsets.

[image: image28.wmf]ã

SAP

AG 2002

Offset and Length Accesses and Elementary Data

Objects

Access to single fields specifying offset and length

<statement> <field>+<off>(<

len

>) ...

.

l

For character

-

type fields, offset and length are interpreted character

by character.

l

In the case of byte

-

type fields, the values for offset and length are

taken in bytes.

DATA: c_field(6) TYPE c VALUE '*ABAP#',

x_field(6) TYPE x VALUE 'E391B9A203F6'.

WRITE: c_field+1(4),

x_field+3(2).

x_

field

E391B9A203F6

c_

field

* A B A P

#

· Offset/length accesses are permitted on character-type single fields, single fields with the type string, and single fields of the types x and xstring.

· For character-type fields and type string fields, offset and length are interpreted character by character. Only with types x and xtring are the values for offset and length taken in bytes.

[image: image29.wmf]ã

SAP

AG 2002

Offset and Length Accesses and Structures

Accessing structures by specifying offset and length

<

statement

> <

structure

>+<

off

>(<

len

>) ...

l

Structure must start with a character

-

type fragment.

l

Access is only allowed within the character

-

type initial part.

l

Offset and length specifications are interpreted as characters.

DATA

:

BEGIN OF member

,

title

(5) TYPE c,

prename

(15) TYPE c,

surname

(15) TYPE c,

age

TYPE i,

city

(20) TYPE c,

END OF member

.

PERFORM use

_

name USING member

+5(30).

member

C(5)

C(15)

C(15)

I

C(20)

+

off

(

len

)

· Offset and length accesses to structures are only permitted in Unicode programs if the structure is flat and the offset and length specifications only contain character-type fields from the beginning of the structure. This means, the access will cause an error if the offset and length area contains both character-type and non-character-type components.

· If an offset/length access is allowed in a Unicode program, both offset and length specifications are interpreted as characters.

· Recommendation:
Only use offset and length accesses if it is necessary or useful. Bear in mind that processing component by component and using character string operations is generally safer and more readable.

[image: image30.wmf]ã

SAP

AG 2002

l

Use elementary data objects and structures

appropriately

l

Use numeric data types appropriately

l

Use automatic type conversions appropriately

l

Take the special features of character string

processing in Unicode into account

You are now able to:

Data Types and Data Objects in Detail: Summary

 Data Types and Data Objects in Detail Exercise 1

	[image: image31.png]

	Unit:
Data Types and Data Objects in Detail

Topic:
Defining Data Types and Data Objects

Basic Statements

Processing Character Strings

	[image: image32.png]

	At the conclusion of these exercises, you will be able to:

· Define structure types locally in the program

· Define elementary and complex data objects

· Split strings

· Use conversion rules

· Display the contents of data objects in lists

	[image: image33.wmf]
	In this exercise, you will use a template to create a program that receives a single data record from the database table SFLIGHT in form of a character string. The program will split the this character string into its components and display it formatted in a list.

Because the focus of this exercise is not on the transfer of data as a character string, we will use a function module that will provide us with the required database. This will simulate actual cases, such as data transfer from an external system.

	[image: image1.wmf]ã

SAP

AG 2002

l

Data objects in programs

l

Elementary data objects

l

Structures

l

Character string processing in Unicode

Contents:

Data Types and Data Objects in Detail

	Program:

ZBC401_##_SPLIT_STRING
Template:

SAPBC401_DTOT_SPLIT_STRING
Model solution:

SAPBC401_DTOS_SPLIT_STRING
is your two-digit group number

1-1
Copy the program, SAPBC401_DTOT_SPLIT_STRING and give it the new name ZBC401_##_SPLIT_STRING.

1-2
Familiarize yourself with the main body of the program. Pay special attention to the content of the data object datastring after the function module call. Use the Debugger to do this, and/or display the character string in a list. (The function module itself is here seen as a black box. For this exercise, it is not necessary to understand its construction.)

1-3
To be able to split the character string into its components you must first remove the ## characters. Remove the two leading separators from the character string first. Then copy the initial part up to the closing separators to the auxiliary variable set_string. For this, set_string has to be defined appropriately.

1-4
Now use the separators to split the contents of the auxiliary variable set_string into the structure wa_flight_c. The latter is typed with the local program structure type st_flight_c. You still have to comment out the components of this structure type and assign them an appropriate type.

1-5
As a test, display the fields of the structure, wa_flight_c in a list.

1-6
In the list displayed in exercise 1-5, you should have observed that some of the fields were displayed without formatting – for example, the PRICE field. Your next step is to change this.
To do this, convert the data you have extracted by copying it to data objects with suitable types. Also, not all components of wa_flight_c are to be displayed.
For this purpose, a structure wa_flight has already been defined. It is typed with the structure type st_flight. You must comment out the components of st_flight and find appropriate types for these components for the formatting. Then copy the identically-named components of the character-type structure wa_flight_c to the fields of the structure wa_flight.
Display the contents of the structure wa_flight in a list. Use the appropriate formatting options for the WRITE statement for the fldate and price components.

	
	

 Data Types and Data Objects in Detail Solution 1
	
[image: image34.png]

	Unit:
Data Types and Data Objects in Detail
Topic:
Defining Data Types and Data Objects

Basic Statements

Processing Character Strings

REPORT sapbc401_dtos_split_string.
TYPES:
 BEGIN OF st_flight_c,
 mandt(3) TYPE c,
 carrid(3) TYPE c,
 connid(4) TYPE n,
 fldate(8) TYPE n,
 price(20) TYPE c,
 currency(5) TYPE c,
 planetype(10) TYPE c,
 seatsmax(10) TYPE n,
 seatsocc(10) TYPE n,
 paymentsum(22) TYPE c,
 seatsmax_b(10) TYPE n,
 seatsocc_b(10) TYPE n,
 seatsmax_f(10) TYPE n,
 seatsocc_f(10) TYPE n,
 END OF st_flight_c,
 BEGIN OF st_flight,
 carrid(3) TYPE c,
 connid(4) TYPE n,
 fldate TYPE d,
 price(9) TYPE p DECIMALS 2,
 currency(5) TYPE c,
 planetype(10) TYPE c,
 seatsmax TYPE i,
 seatsocc TYPE i,
 END OF st_flight.
DATA:
 datastring TYPE string,
 set_string TYPE string,
 wa_flight_c TYPE st_flight_c,
 wa_flight TYPE st_flight.
START-OF-SELECTION.
 CALL FUNCTION 'BC401_GET_SEP_STRING'
* EXPORTING
* IM_NUMBER = '1'
* IM_TABLE_NAME = 'SFLIGHT'
* IM_SEPARATOR = '#'
* IM_UNIQUE = 'X'
 IMPORTING
 ex_string = datastring
 EXCEPTIONS
 no_data = 1
 OTHERS = 2.
 IF sy-subrc <> 0.
 MESSAGE a038(bc401).
 ENDIF.
 SHIFT datastring BY 2 PLACES.
 FIND '##' IN datastring.
 IF sy-subrc <> 0.
 MESSAGE a702(bc401).
 ENDIF.
 SPLIT datastring AT '##' INTO set_string datastring.
 SPLIT set_string AT '#' INTO
 wa_flight_c-mandt
 wa_flight_c-carrid
 wa_flight_c-connid
 wa_flight_c-fldate
 wa_flight_c-price
 wa_flight_c-currency
 wa_flight_c-planetype
 wa_flight_c-seatsmax
 wa_flight_c-seatsocc
 wa_flight_c-paymentsum
 wa_flight_c-seatsmax_b
 wa_flight_c-seatsocc_b
 wa_flight_c-seatsmax_f
 wa_flight_c-seatsocc_f.
 MOVE-CORRESPONDING wa_flight_c TO wa_flight.
 WRITE: /
 wa_flight-carrid,
 wa_flight-connid,
 wa_flight-fldate DD/MM/YYYY,
 wa_flight-price CURRENCY wa_flight-currency,
 wa_flight-currency,
 wa_flight-planetype,
 wa_flight-seatsmax,
 wa_flight-seatsocc.
© SAP AG
TAW10
2-1

_1078137777.doc
[image: image1.png]

