
0 [image: image1.wmf]ã

SAP AG 2001

Appendix

l

This section contains supplementary material

to

be used as reference

.

l

This material is

not

part of the standard course

.

l

Therefore

,

the instructor might

not cover

this during

the course presentation

.

[image: image2.wmf]ã

SAP AG 2001

Program Types

Program Types

Program Types

Data Types

,

Data Objects

,

and

Statements

Data Types

,

Data Objects

,

and

Statements

Logical Databases

Logical Databases

Preview

Preview

[image: image3.wmf]ã

SAP AG 2001

Include

: <

include

_

name

>

(

Program type

:

Include

)

Program

: <

program

_

name

>

REPORT <

program

_

name

>.

:

INCLUDE

<

include

_

name

>.

:

ABAP

statements

Programs of

"

Include

" Type

[image: image4.wmf]ã

SAP AG 2001

REPORT <

name

>.

TYPES:...

DATA: ...

Program

: <

name

>TOP

Program type

:

Include

Program

: <

name

>

Program type

:

executable

INCLUDE <

name

>TOP.

START

-

OF

-

SELECTION.

:

Create program

program

<

name

>

With

TOP

-

Include

Repository

Browser:

Create program

TOP

Include

[image: image5.wmf]ã

SAP AG 2001

Standard

Includes for Function Groups

The Object

List

E

dit

G

oto

U

tilities

E

n

vironment

S

y

stem

H

elp

Object

Navigator

The Object

List

Display

BC402_FMDD_WAITLIST

Function group

Class

Local Objects

Development class

program

W

orkbench

E

dit

G

oto

E

x

tras

E

n

vironment

S

y

stem

H

elp

Object

Navigator

Object name

BC402_FMDD_WAITLIST

Function modules

Fields

PBO

modules

Screens

GUI

title

Includes

LBC402_FMDD_WAITLISTTOP

LBC402_FMDD_WAITLISTO01

LBC402_FMDD_WAITLISTU01

>

<

<

<

<

<

>

LBC402_FMDD_WAITLISTU02

LBC402_FMDD_WAITLISTU03

LBC402_FMDD_WAITLISTU04

LBC402_FMDD_WAITLISTU05

LBC402_FMDD_WAITLISTU06

LBC402_FMDD_WAITLISTUXX

Add waiting customer

Waiting customer from list

Display

waiting list

Move

up

waiting customer

Return position

in

list

Change waiting position

Function modules

Function modules

Function modules

Function modules

Function modules

PBO

modules

Global

declarations

Include function modules

· When you work with function groups and modules, you can use the ABAP Workbench to arrange the program source code in overview form and structure it with ease.

· In the Navigation function, you always branch to the correct object, and Include programs are given names and created. The respective call statements are automatically entered at the correct position.

· The call statements must contain only the name convention for function groups: Y|Z<rem_name>.
· The system then creates a program of F type, SAPLY|Z<rem_name>. This contains only INCLUDE statements that were created automatically. The Include programs are automatically given the name LY|Z<rem_name><abbrev><num>.

· In addition, the system includes the Include program, LY|Z<rem_name>UXX. Here, there is a call for an appropriate Include program, LY|Z<rem_name>U<num>, for each function module.

[image: image6.wmf]ã

SAP AG 2001

Data Types

,

Data Objects

,

and

Statements

Program Types

Program Types

Data Types

,

Data Objects

,

and

Statements

Data Types

,

Data Objects

,

and

Statements

Logical Databases

Logical Databases

Preview

Preview

[image: image7.wmf]ã

SAP AG 2001

Structures and internal Tables Can be Nested

· Structure types can contain other structure types or table types.

· Table types can contain structure types and table types.

· In the keyword documentation for the keyword TYPES, you will find the syntax for defining table types.

[image: image8.wmf]ã

SAP AG 2001

TYPE

-

POOL Z400.

TYPES:

z400_

name

_

type

(25) TYPE C,

BEGIN OF z400_

flightrec

_

type

,

... ,

END OF z400_

flightrec

_

type

.

REPORT ...

.

TYPE

-

POOLS z400.

DATA:

name

TYPE z400_

name

_

type

,

wa

TYPE z400_

flightrec

_

type

.

... .

ABAP

Type

Groups

in

the

ABAP

Dictionary

· In addition to declaring a data type within an ABAP program, you can also declare data types in a type group in the ABAP Dictionary.

· The type group name in the ABAP Dictionary has a maximum of five characters. Type names within the type group <typpool> must begin with <typpool> followed by an underscore.

· The types in a type group must be declared in ABAP programs with the TYPE-POOLS command.

[image: image9.wmf]ã

SAP AG 2001

Type

Conversion

l

When are two types compatible

?

n

Two elementary types are compatible if they are identical

in

type

and

length

(

and number of

decimal places

in

the case of

packed numbers

).

n

Two structure types are compatible if they have the

same

structure

and their

components

are

compatible

.

n

Two table types are compatible if their

line types

are

compatible

and their

key definitions

,

key categories

,

and

table

types

are

identical

.

l

Data objects with compatible types can be assigned

without conversion

.

l

Non

-

compatible types can be converted if

a

conversion

rule has been defined

.

If two data types are not compatible, but a conversion rule exists, then the system

performs type conversions for value assignments, calculations, or comparisons.

The following graphics introduce the basic forms of conversion rules and give examples

of the most important cases. All the conversion rules can be found in the ABAP documentation

on the MOVE statement.

If no conversion rule is defined for a statement, the system's reaction depends upon

the particular program context:

· In the case of statistical types, the system issues a syntax error.
Example:
DATA: date TYPE d VALUE '19991231', time TYPE t.
FIELD-SYMBOLS: <fs_date> TYPE d, <fs_time> TYPE t.
ASSIGN: date TO <fs_date>, time TO <fs_time>.
<fs_time> = <fs_date>.

· In the case of dynamic types, the system issues a runtime error since the the field symbols are typed only when the data objects are assigned at runtime.

Example (rest as above):
...
FIELD-SYMBOLS: <fs_date> TYPE ANY, <fs_time> TYPE ANY.
...

[image: image10.wmf]ã

SAP AG 2001

Logical Expressions

*

comparisons for

all

datatypes

:

.. <

dobj

> {EQ|=} {<

literal

>|<

dobj

>} ..

"

equal

.. <

dobj

> {NE|<>} {<

literal

>|<

dobj

>} ..

"not

equal

.. <

dobj

> {GT|>} {<

literal

>|<

dobj

>} ..

"

greater than

.. <

dobj

> {GE|>=} {<

literal

>|<

dobj

>} ..

"

greater or equal

.. <

dobj

> {LT|<} {<

literal

>|<

dobj

>} ..

"

less than

.. <

dobj

> {LE|<=} {<

literal

>|<

dobj

>} ..

"

less or equal

.. <

dobj

> BETWEEN {<

lit

>|<

dobj

>} AND {<

lit

>|<

dobj

>} ..

.. <

dobj

> IS INITIAL ..

*

nesting logic expressions

:

.. <

nest

_

op

> (<expr1> <

nest

_

op

> <expr2>) <

nest

_

op

> ..

*

possible operators

<

nest

_

op

>:

.. AND ..

"all

expressions must be true

.. OR ..

"

one of the expressions must be true

*

negation

:

.. NOT <

expr

> ..

"

true

,

if

<

expr

>

false

· If you have a comparison of non-numeric data objects, these are interpreted differently, depending upon type.

· If possible: conversion in numbers (hexadecimal, for example, as binary number)

· Date and time: interpreted as earlier or later; for example, 12/31/1999 < 01/01/2000

· Other characters: lexographical interpretation according to character code; adapt length by filling in blanks

· References: comparison of address and data type, only “identical“ can be interpreted suitably

· For comparisons of strings and bits, more relational operators are available (see online documentation for IF).

· In the case of links and negations, the standard rules for logical expressions apply:

· NOT is more powerful than AND, AND is more powerful than OR.

· Example

· NOT f1 = f2 OR f3 = f4 AND f5 = f6 therefore corresponds to
(NOT (f1 = f2)) OR (f3 = f4 AND f5 = f6).

· To have a better overview and for security reasons, place your partial expressions in brackets, even if it is not absolutely necessary.

· By setting up your expressions carefully, you can influence the runtime requirement in a positive way.

[image: image11.wmf]ã

SAP AG 2001

Overview

:

Termination

Statements

Loops

:

DO WHILE

SELECT LOOP

Events

I:

LOAD

-

OF

-

PROGRAM.

START

-

OF

-

SELECTION.

GET <

node

> [LATE].

END

-

OF

-

SELECTION.

Events

II:

INITIALIZATION.

AT SELECTION

-

SCREEN [OUTPUT].

TOP

-

OF

-

PAGE.

END

-

OF

-

PAGE.

AT LINE

-

SELECTION.

AT USER

-

COMMAND.

Modularization units

Display

message

then

program

end

and

delete

all

internal

modes

MESSAGE a..

EXIT

CHECK

LEAVE

PROGRAM

LEAVE TO

TRANSACTION

Program

end

Next

run

Leave

loop

Display

list buffer

;

Execute

event

blocks

II

End current

processing block

and proceed

with next

processing block

· ABAP event blocks or modularization units (subroutines, modules) are called processing blocks.

· The CHECK logic_expr statement has the following effect:

· Outside a loop, you can terminate a processing block prematurely. The block statements after the CHECK statement are skipped if the logical condition is not fulfilled. The system then continues with the first statement in the next processing block.

· Within a loop, it has the effect that the next loop is processed.

· The EXIT statement reacts in three different ways:

· Within each loop, loop processing is completed to the end.

· Outside of the loops, but within the first events listed on this slide, the system displays the list buffer with the current content. Afterwards, the events of the other group are triggered and those events listed before START-OF-SELECTION are initiated at the LOAD-OF-PROGRAM event.

· At all other points, EXIT has the same effect as CHECK.

· Using the LEAVE PROGRAM or LEAVE TO TRANSACTION tcode statements, you can terminate the current program.

· After a termination message, the system terminates not only the current program, but also the entire program stack.

[image: image12.wmf]ã

SAP AG 2001

The

MESSAGE Statement, Message

Classes

,

and

Messages

Definition

Use

MESSAGE ID '<

message class

>' TYPE '<

message type

>'

NUMBER '<

message number

>' .

BC400

Message

short text

040

041

002

<

message class

>

Message

class

:

Message

The name of the airline

&1

is

&2

Airline

&1

is

not

available

<

message number

>

Attributes

Messages

Double

Double

-

-

click

click

ID '<

ID '<

message class

message class

>'

>'

NUMBER '<

NUMBER '<

message number

message number

>'

>'

<

message class

>

<

message number

>

<

message class

>

<

message number

>

· To trigger a message dialog in a program, enter the MESSAGE statement with the following additions:
· ID '<message class>' for the message class
· NUMBER '<number>‘ for the message number
· To display the message text for a MESSAGE statement in a program's source code, double-click the message number to go to the associated message class texts.

· Other syntax variants are available for the MESSAGE statement. For more information, refer to the keyword documentation for the MESSAGE statement.

[image: image13.wmf]ã

SAP AG 2001

Self

-

Explanatory

Messages

or

Messages

with Long

Texts

Message

class

BC400

Self

-

explanatory

Definition

Short text

<

short text

>

<

short text

>

Number

000

001

Long text

<

short text

>

Diagnosis

<

text

>

System

activities

<

text

>

Procedure

<

text

>

Procedure for system administrator

<

text

>

Long text

Message

class

:

Number

2

1

: Message

is self

-

explanatory

There is

a

long text

explaining the message

· If a message short text contains all the information the user needs, the message is described as self-explanatory.
Example: "The program has been saved."
Self-explanatory messages are flagged as such in the message class.

· If you want to provide more detailed information for the user, you can do so by storing a long text with the message. In the Message Maintenance screen, the Self-Explanatory flag indicates whether or not a message is indeed self-explanatory. To display the long text, select the message line and choose Long Text. The system then displays the maintenance formats. You can display the formatted text by choosing Screen Output. You usually create the long text from a template, which contains the headings Diagnosis, System Activities, Procedure, and Procedure for the System Administrator. The system does not display the heading to the user if there is no text stored under it.

[image: image14.wmf]ã

SAP AG 2001

Messages

with Placeholders

Definition

Use

MESSAGE ID '<

message class

>' TYPE '<

message type

>'

NUMBER <

nnn

>

WITH <var1> <var2> <var3> <var4> .

WITH <var1> <var2> <var3> <var4>

&1

&2

&3

&4

BC400

Message

short text

039

040

041

Message

class

:

Message

The name of the airline

&1

is

&2

Airline

&1

is

not

available

Attributes

Messages

· You can include up to four placeholders in a message (&1, &2, &3 and &4). You can then assign current parameters to them in the MESSAGE statement using the WITH addition. You can use literals, text symbols, or variables. You must include a space between each one. The current parameters are assigned to the placeholders &1, &2, &3, and &4 in order.

· In the long text, the placeholders are given the names &V1&, &V2&, &V3&, and &V4& and replaced at run time in order, according to the same logic. To insert a placeholder in the long text:

· Place your cursor in the text where you want to insert the placeholder.

· Choose Edit�¨Command�¨Insert command . The system displays a dialog box. In Symbols, enter &V1& (or &Vi& i = 2, 3 or 4, as appropriate).

· Choose Enter to confirm the dialog box.

[image: image15.wmf]ã

SAP AG 2001

Creating

Message

Classes and

Messages

In

the Object

Navigator:

Create using forward navigation

MESSAGE ID '<

message class

>' TYPE '<

message type

>'

NUMBER '<

message number

>' .

Message

class available

?

Double

-

click

Double

-

click

Create message class

No

Create message

Yes

<

message class

>

<

message number

>

Development class

ZBC400_12

Create

...

Message

class

Programs

...

Message

classes

ZBC400_MC12

...

Change

Display

ZBC400_12

Note: Messages

can

be translated

.

They

then

appear

in

the

user's

logon language

.

· To create your own message class, give it a name in the customer namespace, that is, a name beginning with Y, Z, or the namespace prefix.

· To create a message, assign a three-digit number and a message class to it.

· You can create both the message class and the message itself using forward navigation from the MESSAGE statement.

· In the Object Navigator, you can create and edit a message class in any of the following ways:

· From the context menu belonging to the root node in the object list of the respective development class

· From the context menu belonging to the Message class node in the object list of the appropriate development class

· From the Other object... icon
A dialog box containing a tab appears. In the Other tab, enter a message class, or a message with its message class, and then display, create, or change it by choosing the appropriate icon.

[image: image16.wmf]ã

SAP AG 2001

Colors

in

Lists

1

Flight from

to

AA 0017 NEW YORK SAN FRANCISCO

LH 0400

FRANKFURT NEW YORK

LH 0402 FRANKFURT BERLIN

Creation

date: 01/01/2001

Created by

: WITTMANN

REPORT sapbc400udd_

example

_1a.

INCLUDE <LIST>.

:

WRITE

: /

wa

_

spfli

-

carrid

COLOR

col

_

key

,

icon

_date

AS ICON

,

WRITE <

data object

> <

option

> .

Colors

/

Icons

/Symbols in

Lists

· You can set several list display attributes within a WRITE statement. One such attribute is color, which can be adjusted using the formatting option COLOR <n>. You can choose from seven background colors that are activated by either a numeric value or a symbolic name.

0
col_background
Background

1
col_heading
Headers

2
col_normal
List entries

3
col_total
Totals

4
col_key
Key columns

5
col_positive
Positive threshold value

6
col_negative
Negative threshold value

7
col_group
Control levels

· SAP provides guidelines for creating lists in color. Please consult transaction LIBS for examples.

· With the help of one more parameter of the WRITE statement AS ICON , you can use icons in your list. For this purpose, you must include the Include <LIST> statement in your program.

· You can find an overview of all available icons in either the keyword documentation under WRITE, or in the WRITE statement structure.

[image: image17.wmf]ã

SAP AG 2001

PBO

PAI

CALL SCREEN 100

100

PBO

PAI

Screen attributes

Screen number

100

Next screen

100

Screen attributes

Screen number

200

Next screen

2

00

200

0

200

0

Dynamic Screen Sequence

· You can use this technique to program clusters of screens with complicated links without having to continually return to the source code and call them using CALL SCREEN.

[image: image18.wmf]ã

SAP AG 2001

Exceptions for Function Modules

Function module

E

dit

G

oto

U

tilities

E

n

vironment

S

y

stem

H

elp

Function Builder

: Display BC402_FMDD_GET_FREE_SEATS

Function module

BC402_FMDD_GET_FREE_SEATS

Active

tables

Changing

Export

Function module documentation

Import

Attributes

Exception

Short text

Freight carrier

Source code

Exceptions

NO_SEATS

overbooked

OVERLOAD

RAISE

<

exception

>

.

*** with default message

:

MESSAGE

<

kind

><

num

>

(

<

id

>

)

RAISING

<

exception

>

.

no data

DB_FAILURE

You can have a function module trigger a Raise Exceptions.

For this purpose, you must first define exceptions in the interface definition, that is, you must

define distinguishable identifiers for your exceptions.

In the source code, you program the triggering of an exception under the required

conditions. At runtime, the function module execution is interrupted if an exception has

been triggered. Changes to Export and Changing parameters have the same effect as

with subroutine calls. There are two statement variants. Here, exception stands for

an exception you have declared, that is, for the identifier. Depending upon whether the exception

is carried out when the function module is called, the statements can have different effects.

· RAISE <exception>
If the exception is executed in the calling program, control is passed back to the same. Otherwise a runtime error occurs.

· MESSAGE <kind><num>(<id>) RAISING <exception>
If the exception is listed in the calling program, this statement corresponds to the first variant. If the exception is not executed, the system displays a message num of message class id with behavior kind. Therefore, a runtime error does not occur in this situation.

[image: image19.wmf]ã

SAP AG 2001

Logical Databases

Program Types

Program Types

Data Types

,

Data Objects

,

and

Statements

Data Types

,

Data Objects

,

and

Statements

Logical Databases

Logical Databases

Preview

Preview

[image: image20.wmf]ã

SAP AG 2001

SPFLI

Example

:

Logical Database

F1S

SFLIGHT

SBOOK

Reading Logically Dependent Data

· You can use easy-to-use read programs (logical databases) to read logically connected data. Each logical database has a structure containing a hierarchy of those tables and views that are to be read.

· You can attach exactly one logical database to each type 1 program. The logical database then supplies your program with entries from tables and views. This means that you need to program the data processing statements only.

[image: image21.wmf]ã

SAP AG 2001

You can attach

a

logical database

to

each type

1

program

using the program attributes

.

Special event blocks are

also

available for processing

individual

records

.

You can attach

a

logical database

to

each type

1

program

using the program attributes

.

Special event blocks are

also

available for processing

individual

records

.

Logical Databases

l

Special data collection programs delivered by

SAP

l

Provide your program with data

in a

hierarchically logical

sequence

l

Contain data base accesses that have been optimized for

performance

l

Supply

a

dynamic selection screen

l

Contain

all

necessary authorization checks

· Each logical database is an encapsulated data collection program for frequent database access.

· Database access has been optimized using Open SQL.

· If you are working with a logical database, you do not need a selection screen for user entry, because it is created automatically.

· The system performs authorization checks according to the SAP authorization concept.

[image: image22.wmf]ã

SAP AG 2001

Program

NODES

sflight

.

GET

sflight

...

:

SPFLI

SFLIGHT

SBOOK

Data from

the

LDB

Controlling

an LDB

from Within

a

Program

· The NODES <node> statement performs two functions:

· It defines a data object (a structure) as a table work area that has the same structure as the database table. This structure is then filled at run time with all the data records that the logical database has read from the database and made available to the program.

· It controls the executability of the selection screen. The selection screen was defined in the logical database should contain only those key information input fields that the program needs. The NODES statement allows you to ensure that only information from relevant tables is available to the logical database.

· Logical databases read according to their structure, that is, from top to bottom. The depth of data read depends on a program's GET statements. The deepest GET statement from the structural view of the logical database determines the level.

[image: image23.wmf]ã

SAP AG 2001

Program

ABAP

runtime

system

START

-

OF

-

SELECTION.

Basic

list

GET

spfli

.

GET

sflight

.

END

-

OF

-

SELECTION.

NODES: SPFLI,

SFLIGHT.

Logical

database

SPFLI

SFLIGHT

SBOOK

Event

Blocks in

Logical Databases

· You can include a logical database in every executable program (type 1) using the program attributes.

· Each node in the hierarchy of the logical database also provides you with a GET event block in addition to the other event blocks (GET SPFLI, GET SFLIGHT, and GET SBOOK in the example in the graphic).

· You can program individual record processing using these GET event blocks.

· At run time, the event blocks that create lists are processed in the following order:

· START-OF-SELECTION.

· GET SPFLI and GET SFLIGHT are called several times in nested SELECT logic according to the structure of the logical database.

· END-OF-SELECTION is called after all GET events, and immediately before the list is sent to the presentation server

[image: image24.wmf]ã

SAP AG 2001

START

-

OF

-

SELECTION

GET SPFLI

GET SFLIGHT

GET SFLIGHT

GET SPFLI LATE

GET SPFLI

END

-

OF

-

SELECTION

DL 1699

25.08.1998

27.09.1998

DL 1984

GET SFLIGHT

GET SFLIGHT

GET SPFLI LATE

25.08.1998

27.09.1998

GET SFLIGHT

29.09.1998

REPORT bc400d_

logical

_

database

.

NODES:

spfli

,

sflight

.

START

-

OF

-

SELECTION.

WRITE: / 'START

-

OF

-

SELECTION'

color

3.

GET

spfli

FIELDS

carrid connid

.

WRITE: / 'GET SPFLI'

color

1,

spfli

-

carrid

,

spfli

-

connid

.

GET

sflight

FIELDS

fldate

.

WRITE: / 'GET SFLIGHT'

color

2,

sflight

-

fldate

.

GET

spfli

LATE.

WRITE :/ 'GET SPFLI LATE'.

END

-

OF

-

SELECTION.

WRITE: 'END

-

OF

-

SELECTION'

color

3.

Syntax

Example

:

Event Sequence

GET

spfli

GET

sflight

GET

spfli

LATE.

· At run time, the event blocks that create lists are processed in the following order:

· START-OF-SELECTION.

· GET spfli: The first data record from database table SPFLI that corresponds to the selection criteria is placed in work area spfli and the event block is processed.

· GET sflight: The first data record from SFLIGHT that corresponds to the selection criteria as well as to the key of the current SPFLI record are placed in work area sflight and the event block is processed.

· GET sflight: The next data record from database table SFLIGHT is placed into work area sflight and the event block is processed again.

· GET sflight: This is called again until no further corresponding data records are found.

· GET spfli LATE is called before the next data record from SPFLI is placed into work area spfli.

· GET spfli: The logical database places the next corresponding data record from SPFLI in work area spfli.

· END-OF-SELECTION is called immediately before the list is displayed.
[image: image25.wmf]ã

SAP AG 2001

ABAP:

ABAP:

Program attributes

Program attributes

Logical Database

Application

S

F1S

Type

1

NODES :

spfli

,

sflight

.

START

-

OF

-

SELECTION.

WRITE: / 'START

-

OF

-

SELECTION'

color

3.

GET

spfli

FIELDS

carrid connid

.

WRITE: / 'GET SPFLI'

color

1,

spfli

-

carrid

,

spfli

-

connid

.

GET

sflight

FIELDS

fldate

.

WRITE: / 'GET SFLIGHT'

color

2,

sflight

-

fldate

.

GET

spfli

LATE.

WRITE :/ 'GET SPFLI LATE'.

END

-

OF

-

SELECTION.

WRITE: 'END

-

OF

-

SELECTION'

color

3.

SPFLI

SPFLI

SFLIGHT

SFLIGHT

SBOOK

SBOOK

Attributes

Summary

GET

spfli

GET

sflight

GET

spfli

LATE.

NODES

· Logical databases are included in type 1 programs as program attributes. Only one logical database can be used for each program.

· You can supply a logical database with the information regarding which fields you need from the database using the GET addition FIELDS. If the logical database supports this action, it will read from the database only those fields you require.

· If, for your list, you need database table data that is not supplied by your logical database, you can program any additional database access needed using SELECT.

[image: image26.wmf]ã

SAP AG 2001

Preview

Program Types

Program Types

Data Types

,

Data Objects

,

and

Statements

Data Types

,

Data Objects

,

and

Statements

Logical Databases

Logical Databases

Preview

Preview

[image: image27.wmf]ã

SAP AG 2001

Sequential

Files

SAP

Interfaces

/

Checks

External

Server

External Data

Transfer I

· When you transfer data from another SAP or external system to your own SAP system, it is important to ensure data integrity.

· Thus, it is necessary to subject this type of data transfer to the same checks as data transfer in dialog mode.

· Since dialog mode checks in transactions are comprehensive and, in part, done on a cross-application basis, it is extremely difficult to program them yourself.

· Therefore, it is much easier to use the online checks provided for SAP transactions because these SAP transactions are used also for the data transfer.

· The techniques used for external data transfer are called batch-input processes.

· SAP offers standardized procedures for external data transfer for many areas within R/3. These procedures use these programming techniques: batch input, call transaction, and direct input. The SAP standard data transfer procedures are called using the Data Transfer Workbench (transaction SXDA). If no SAP data transfer procedures are available, transfer can be programmed individually using batch input or call transaction.

[image: image28.wmf]ã

SAP AG 2001

Sequential

file

Queue

file

SAP

database

Application function

Application function

Batch input function

Batch input function

BDC

table

BDC

BDC

table

table

BATCH INPUT:

BATCH INPUT:

Sequential

file

SAP

database

Application function

Application function

BDC

table

BDC

BDC

table

table

CALL TRANSACTION:

CALL TRANSACTION:

CALL

TRANSACTION

Sequential

file

SAP

database

DIRECT INPUT:

DIRECT INPUT:

SAP

transfer

program

External Data

Transfer II

[image: image29.wmf]ã

SAP AG 2001

Update

process

UPDATE

UPDATE

INSERT

INSERT

DELETE

DELETE

Dialog

process

Log

Log

table

table

DELETE

req

.

UPDATE

req

.

INSERT

req

.

Database process

PBO

PAI

PBO

PAI

PAI

PBO

INSERT

Request

UPDATE

Request

DELETE

Request

COMMIT WORK

COMMIT WORK

Update

· Another way of bundling database changes at the end of an SAP LUW is to use the update technique. Here, you do not pass updates directly to the database, but enter them as update requests in a log table instead.

· Using the ABAP statement COMMIT WORK, you end SAP LUW in dialog mode. The SAP system then triggers a special work process called an update work process that, based upon your log entries, executes the actual changes to the database within a database transaction. The SAP LUW ends only when the update process has finished.

· The program part in the dialog and update process can run either synchronously or asynchronously.

· The advantage of update in contrast to bundling using subroutines is that you can store the data for the database change in the log table at any time and do not have to keep it in the program work area. Its disadvantage lies in the effort required for additional logging.

· Use asynchronous update when response times are important and the database updates are complicated enough that they justify the extra work involved in using the log table.

· Use synchronous update whenever you need the changed data immediately and when the database updates are complicated enough to justify the extra work involved in using the log table.

© SAP AG
TAW10
19-29

