
0 [image: image1.wmf]ã

SAP

AG 2002

l

Techniques for calling programs

l

Memory model

l

Techniques for passing data

l

Use

Contents:

Calling Programs and Passing Data

[image: image2.wmf]ã

SAP

AG 2002

l

Describe the SAP R/3 memory model

l

Call executable programs

l

Call transactions

l

Use the various memory areas to pass data

At the conclusion of this unit, you will be able to:

Calling Programs and Passing Data: Unit Objectives

[image: image3.wmf]ã

SAP

AG 2002

Calling Programs and Passing Data (1)

Calling programs

Calling programs

Memory management

Memory management

Passing data

Passing data

[image: image4.wmf]ã

SAP

AG 2002

Calling Programs

2

2

1

1

Main

memory

2

2

1

1

Main

memory

1

1

New program

End insert

1

1

2

2

Program 1

Program 2

Time

Insertion

Restart

Insert program

There are two ways of starting an ABAP program from another ABAP program that is already running:

· The called program is inserted, that is the current program is interrupted to run the new one. The called program is executed, and afterwards, processing returns to the program that called it.

· The current program is terminated and the called program is started.

Complete ABAP programs within a single user session can only run sequentially. We refer to this technique as sequential calling.

If you want to run functions in parallel, you must use function modules. For further information about this technique, refer to the course BC415 (Communication Interfaces in ABAP) or the documentation for the CALL FUNCTION ... STARTING NEW TASK ... statement.

[image: image5.wmf]ã

SAP

AG 2002

Calling an Executable Program

Program 1

...

SUBMIT

prog

_name_2.

...

...

SUBMIT

prog

_name_2

AND RETURN.

...

...

SUBMIT

prog

_name_2

VIA SELECTION

-

SCREEN

AND RETURN.

...

prog

_name_2

PROGRAM ...

...

List

Selection Screen

Program 2

F3

F3

F3

prog

_name_2

PROGRAM ...

...

List

F3

prog_name_2

PROGRAM ...

...

Liste

Insertion

Restart

Insertion

To start an executable program, use the SUBMIT statement.

If you use the VIA SELECTION-SCREEN addition, the system displays the standard selection screen of the program (if one has been defined).

If you use the AND RETURN addition, the system resumes processing with the first statement after the SUBMIT statement once the called program has finished.

For further information, refer to the documentation for the SUBMIT statement.

[image: image6.wmf]ã

SAP

AG 2002

Calling a Transaction

SAPM t_name

...

LEAVE PROGRAM.

...

Program 1

...

LEAVE TO TRANSACTION

'T_CODE'

[AND SKIP FIRST SCREEN].

...

1.

Screen

2.

Screen

F15

Program 2: Transaction

TCODE

TCODE

SAPM t_name

...

LEAVE PROGRAM.

...

...

CALL TRANSACTION

'T_CODE'

[AND SKIP FIRST SCREEN].

...

1.

Screen

2.

Screen

F15

Insertion

Restart

With the LEAVE TO TRANSACTION 'T_CODE' statement you terminate the current program and start the transaction with transaction code T_CODE. The statement is the equivalent to entering /n<T_CODE> in the command field.
CALL TRANSACTION 'T_CODE' allows you to insert ABAP programs that have a transaction code.

To terminate an ABAP program, use the LEAVE PROGRAM statement. If the statement is used in a program that you called using CALL TRANSACTION 'T_CODE' or SUBMIT prog_name AND RETURN, the system resumes processing at the next statement after the call in the calling program.
Otherwise, the user returns to the application menu from which he or she started the program.

If you use the ... AND SKIP FIRST SCREEN addition, the system does not display the screen contents of the first screen. However, it does process the flow logic.

If the transaction T_CODE you called with CALL TRANSACTION uses update techniques, you can use the UPDATE... addition to specify the update technique (asynchronous (default), synchronous, or local) that the program should use. For further information, refer to course BC414 (Programming Database Updates) and the online documentation.
[image: image7.wmf]ã

SAP

AG 2002

Calling Programs and Passing Data (2)

Calling programs

Calling programs

Memory management

Memory management

Memory management

Passing data

Passing data

[image: image8.wmf]ã

SAP

AG 2002

Logical Memory Model

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

Internal session 2.1

Program 2.1

SAP memory

User terminal session

Internal session 1.2

Program 1.2

The way in which the main memory is organized from the program's point of view can be represented in the above logical model. There is a distinction between internal and external sessions:

· Generally, an external session is connected to an R/3 window. You can create a new session by choosing System  New Session or by entering /o<T_CODE> in the command field. You can have up to six external sessions open simultaneously in one terminal session.

· External sessions are subdivided into internal sessions (placed on a stack). Each program that you run occupies its own internal session. Each external session can contain up to nine internal sessions.

Data for a program is only visible within an internal session. The visibility of the data is generally restricted to the relevant program.

The following slides illustrate how the stack inside an external session changes with various program calls.
[image: image9.wmf]ã

SAP

AG 2002

Inserting a Program (1)

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

Internal session 2.1

Program 2.1

SAP memory

User terminal session

[image: image10.wmf]ã

SAP

AG 2002

Inserting a Program (2)

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

Internal session 2.1

Program 2.1

SAP memory

User terminal session

Internal session 1.2

Program 1.2

Program 1.2

Insertion

When you insert a program, the system creates a new internal session, which in turn creates a new program context.

The new session is placed on the stack The program context of the calling program also remains intact.

[image: image11.wmf]ã

SAP

AG 2002

Terminating the Inserted Program

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

Internal session 2.1

Program 2.1

SAP memory

User terminal session

When the called (inserted) program finishes, its internal session (the top one in the stack) is deleted.

Processing is resumed in the next-highest internal session in the stack.

[image: image12.wmf]ã

SAP

AG 2002

Restarting an Executable Program (1)

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

SAP memory

User terminal session

Internal session 1.2

Program 1.2

Internal session 1.3

Program 1.3

Internal session 2.1

Program 2.1

When you end a program and start a new one, there is a distinction between calling an executable program and calling a transaction, with regard to memory areas.

[image: image13.wmf]ã

SAP

AG 2002

Restarting an Executable Program (2)

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

SAP memory

User terminal session

Internal session 1.2

Program 1.2

Internal session 1.3'

Programm

Programm

1.3'

1.3'

Internal session 2.1

Program 2.1

Restart

If you call an executable program using its program name (terminating the calling program), the system deletes the internal session of the program that you are terminating (the top one from the stack).

The system creates a new internal session, which in turn creates the program context of the called program.

The new session is placed on the stack Existing program contexts remain intact. The topmost internal session on the stack is replaced.

[image: image14.wmf]ã

SAP

AG 2002

Restarting a Transaction (1)

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

SAP memory

User terminal session

Internal session 1.2

Program 1.2

Internal session 1.3

Program 1.3

Internal session 2.1

Program 2.1

[image: image15.wmf]ã

SAP

AG 2002

Restarting a Transaction (2)

External session (window) 1'

ABAP memory 1'

Interner

Modus 1'.1

Program 1'.1

Program 1'.1

External session (window) 2

ABAP memory 2

SAP memory

User terminal session

Internal session 2.1

Program 2.1

Restart

(complete

initialization)

If you start a program using its transaction code (that is, if one was defined), all of the internal sessions on the stack are deleted.

The system creates a new internal session, which in turn creates the program context of the called program.

After the call, the ABAP memory is initialized.

[image: image16.wmf]ã

SAP

AG 2002

Calling Programs and Passing Data (3)

Calling programs

Calling programs

Memory management

Memory management

Passing data

Passing data

Passing data

[image: image17.wmf]ã

SAP

AG 2002

Overview: Passing Data Between Programs

Program A

1

1

4

4

DB

DB

Interface

SAP memory

(SET/GET parameters)

ABAP memory

2

2

3

3

Program B

5

5

There are various ways of passing data to programs running in separate internal sessions:

You can use:

· The interface of the called program (usually a standard selection screen)

· ABAP memory

· SAP memory

· Database tables

· Local files on your presentation server

The following slides deal with the first three of these methods.

For further information regarding the passing of data using database tables or the shared buffer, refer to the documentation for the EXPORT and IMPORT statements.

For further information on transferring data between an ABAP program and a presentation server, refer to the documentation for the function modules GUI_UPLOAD and GUI_DOWNLOAD.
[image: image18.wmf]ã

SAP

AG 2002

Passing Data Using the Program Interface

Program A

Data

Data

Program B

Standard selection screen

When you call ABAP programs that have a standard selection screen, you can pass data for the input fields in the call.

 There are two ways to do this:

· By specifying a variant for the selection screen when you call the program

· By specifying values for the input fields when you call the program

[image: image19.wmf]ã

SAP

AG 2002

Preassigning

Values for Input Fields

DATA set TYPE|LIKE RANGE OF type|

dataobje

ct}.

SUBMIT

prog

_name AND RETURN [VIA SELECTION

-

SCREEN]

WITH parameter

EQ|NE|...

v

al

WITH

sel

_opt

EQ|NE|...

val

SIGN

'I'|

'E'}

WITH

sel

_opt BETWEEN val1 AND val2 SIGN

'I'|'E

'}

WITH

sel

_opt NOT BETWEEN val1 AND val2 SIGN

'I'|'E

'}

WITH

sel

_opt IN set

... .

Insert pattern

. . .

Other pattern

SUBMIT

. . .

. . .

Pattern for SUBMIT

statement inserts the

appropriate frame for the

program call into the

source code

The WITH addition to the SUBMIT statement allows you to preassign values for parameters and selection options on a standard selection screen of the called executable program. The abbreviations "EQ, NE, ...; I, E" have the same meanings as with selection options.
If you want to pass several selections for a selection option, you can use the RANGE statement instead of individual WITH additions. The RANGES statement creates a selection table, which you can fill as though it were a selection option. You then pass the whole table to the executable program.

If you want to display the standard selection screen when you call the program, use the VIA SELECTION-SCREEN addition.

When you use the SUBMIT statement, use the Pattern function in the ABAP Editor to insert an appropriate statement pattern for the program you want to call. It automatically supplies the names of the parameters and selection options that are available on the standard selection screen.

For further information about working with variants and about other syntax variants of the WITH addition, refer to the documentation for the SUBMIT statement.

[image: image20.wmf]ã

SAP

AG 2002

ABAP Memory and SAP Memory

External session (window) 1

ABAP memory 1

Internal session 1.1

Program 1.1

External session (window) 2

ABAP memory 2

Internal session 2.1

Program 2.1

SAP memory (SET /GET parameters)

SAP memory (SET /GET parameters)

User terminal session

Internal session 1.2

Program 1.2

Internal session 2.2

Program 2.2

You can use SAP memory and ABAP memory to pass data between programs.

· SAP memory is a user-specific memory area for storing field values. It is only of limited value for passing data between internal sessions. Values in SAP memory are retained for the duration of the user's terminal session. The memory can be used between sessions in the same terminal session. You can use the contents of SAP memory as default values for screen fields. All external sessions can use the SAP memory.

· ABAP memory is also user-specific. There is a local ABAP memory for each external session. You can use it to exchange any ABAP variables (fields, structures, internal tables, complex objects) between the internal sessions in any one external session.
When the user exits an external session (/i in the command field), the corresponding ABAP memory is automatically initialized or released.

[image: image21.wmf]ã

SAP

AG 2002

Passing Data Using the ABAP Memory

PROGRAM p1

DATA: p1_spfli TYPE spfli,

it_spfli TYPE STANDARD TABLE

OF spfli.

...

PROGRAM p2

DATA: p2_spfli TYPE spfli,

it_spfli TYPE STANDARD TABLE

OF spfli.

...

wa_fli

it_spfli

MY_ID

ABAP memory

MY_ID1

...

EXPORT

EXPORT

wa_fli FROM p1_spfli

wa_fli FROM p1_spfli

it_spfli

it_spfli

TO MEMORY ID 'MY_ID'.

TO MEMORY ID 'MY_ID'.

IMPORT

IMPORT

wa_fli TO p2_spfli

wa_fli TO p2_spfli

it_spfli

it_spfli

FROM MEMORY ID 'MY_ID'.

FROM MEMORY ID 'MY_ID'.

Internal session 1

Internal session 2

The EXPORT ... TO MEMORY statement allows you to copy any number of ABAP data objects with their current values to the ABAP memory (data cluster).

The ID ... addition enables you to identify different clusters (maximum of 60 characters).

If you use a new EXPORT TO MEMORY statement for an existing data cluster, the new one will overwrite the old.

The IMPORT ... FROM MEMORY ID ... statement allows you to copy the data from the ABAP memory into corresponding data objects of your ABAP program.

It is also possible to only import parts of data clusters using IMPORT.

The data objects that are to receive the data from the ABAP memory cluster must have the same types in both the calling and the called programs.

To release a data cluster, use the FREE MEMORY ID ... statement.

Bear in mind that when you call programs using transaction codes, you can only use the ABAP memory to pass data when inserting (CALL TRANSACTION).
[image: image22.wmf]ã

SAP

AG 2002

Passing Parameters Using the SAP Memory

SAP memory

SAP memory

CAR

CAR

LH

Program A

Program A

Airline

Connection

LH

or

or

Program B

Program B

Airline

Connection

LH

SET

!

GET

!

CON

CON

400

400

400

SET PARAMETER ID

'CON' FIELD

sdyn

_

conn

-

connid

.

CALL TRANSACTION ...

.

GET PARAMETER ID

'CON' FIELD

sdyn

_

conn

-

connid

.

You can define memory areas (parameters) in the SAP memory in various ways:

· By creating input/output fields with reference to the ABAP Dictionary. These take the parameter name of the data element to which they refer.
Alternatively, you can enter a name in the attributes of the input/output fields.
Here, you can also choose whether the entries from the field should be transferred to the parameter (SET), or whether the input field should be filled with the value from the parameter (GET).
To find out about the names of the parameters assigned to input fields, display the field help for the field (F1), then choose Technical info.

· You can also fill the memory areas directly using the SET PARAMETER ID 'PAR_ID' FIELD var. statement and read them using GET PARAMETER ID 'PAR_ID' FIELD var.
· Finally, you can define parameters in the Object Navigator and let the user fill them with values.

[image: image23.wmf]ã

SAP

AG 2002

Preview: Passing Data Using an Internal Table

SAPM t_name

...

LEAVE PROGRAM.

...

1st

screen

2nd screen

F15

Program 2: Transaction

T_CODE

T_CODE

Program 1

...

DATA:

bi_itab TYPE TABLE OF bdcdata,

bi_wa TYPE bdcdata.

* fill bi_itab

...

* call other program

CALL TRANSACTION 'T_CODE'

USING bi_itab.

IF sy

-

subrc = 0.

...

ELSE.

...

bi_itab

The CALL TRANSACTION 'T_CODE' USING bi_itab statement allows you to insert the transaction T_CODE, and the screens are processed according to the internal table bi_itab.

This internal table must be typed according to the structure bdcdata and filled appropriately.

The MODE addition allows you to specify whether the screen contents should all be displayed ('A' - the default setting), only when an error occurs ('E'), or not at all ('N').

The MESSAGES INTO mess_itab addition is used to specify where the system messages sent during the execution of the called transaction are written.

The internal table must be typed according to the structure bdcmsgcoll.

You can find out if the transaction was executed successfully from the system field sy-subrc.

This technique is useful if, for example:

· You are processing in the foreground, but the input fields have not been filled using GET parameters

· You want to process the transaction in the background. In this case, you normally have to pass function codes as well.

This technique is also one of the possible ways of transferring data from non-SAP systems.

To do so the internal table in the bdcdata format must be filled completely.

[image: image24.wmf]ã

SAP

AG 2002

Fields of the Global Type

bdcdata

fnam

fnam

dynpro

dynpro

program

program

Description

dynbegin

dynbegin

Program name

Field name

Field name

fval

fval

132

132

4

4

40

40

1

1

Length

Length

132

132

Note when

filling

Only in 1st

record on screen

Screen number

First record

Field name

Field value

Only in 1st

record on screen

'X' for 1st

record on

screen,

otherwise ' '

Case

-

sensitive

Filling the internal table in batch input format:

· Each screen that is to be processed and filled automatically in the transaction must be identified by a line, in which only the fields program, dynpro and dynbegin are filled.

· After the record that identifies the screen, use a separate bdcdata record for each field you want to fill. These records use the table fields fnam and fval. The following fields can be filled:
•
Input/output fields, with data
•
The command field (bdc_okcode), with function codes
•
The cursor position field (bdc_cursor), with field names.

You also use the CALL TRANSACTION technique to transfer data from external systems.
Further information on this topic is available in the course BC420 (Data Transfer) and in the online documentation.

[image: image25.wmf]ã

SAP

AG 2002

Example: Passing Data Using an Internal Table

fnam

fnam

dynpro

dynpro

program

program

dynbegin

dynbegin

SAPBC401_CALD_CREATE_CUSTOMER

fval

fval

0100

X

SCUSTOM

-

NAME

<current_name>

SCUSTOM

-

CITY

<current_city>

BDC_OKCODE

SAVE

DATA:

wa_bdcdata TYPE bdcdata,

it_bdcdata LIKE TABLE OF wa_bdcdata.

* fill the bdcdata

-

table ...

CALL TRANSACTION 'BC401_CALD_CRE_CUST'

USING it_bdcdata

MODE 'N'.

IF sy

-

subrc <> 0.

MESSAGE ... WITH sy

-

subrc.

ENDIF.

bdcdata

bdcdata

USING

USING

MODE

MODE

ID for command

field

Save

This example refers to the transaction BC401_CALD_CTA_U. If you request the creation of a new customer entry here, the transaction BC401_CALD_CRE_CUST is inserted. This transaction has not implemented an import from the ABAP memory, and its input fields are not set as GET parameters. The customer data is therefore passed using an internal table and the transaction processed in the background.
If the operation is successful, the new customer data record can be entered in the waiting list.

The relevant internal table in bdcdata format is shown above. current_name is the customer name adopted from the input field at runtime, current_city is the city.
You address the command field using BDC_OKCODE. Here you enter the function code that is triggered by the user choosing a function key, pushbutton, or menu entry during the dialog flow (or by entering a code directly in the command field).

[image: image26.wmf]ã

SAP

AG 2002

l

Describe the SAP R/3 memory model

l

Call executable programs

l

Call transactions

l

Use the various memory areas to pass data

You are now able to:

Calling Programs and Passing Data: Unit Summary

© SAP AG
TAW10
18-26

