
0 [image: image1.wmf]ã

SAP AG 2001

l

Defining Subroutines

l

Interface Parameters

l

Visibility

l

Calling Subroutines

l

Subroutines in Debugging Mode

Contents:

Internal Program Modularization with Subroutines

[image: image2.wmf]ã

SAP AG 2001

l

Define subroutines

l

Call subroutines

l

Analyze the execution of subroutines in

debugging mode

At the conclusion of this unit, you will be able to:

Internal Program Modularization with Subroutines:

Unit Objectives

[image: image3.wmf]ã

SAP AG 2001

ABAP program

Calls and Interfaces

30.00

Percentage

occupied

55.50

Sales ratio

Interface

Interface

Subroutine

200

Total seats

1000

Inquiries

60

Occupied seats

555

Bookings

PERFORM ...

PERFORM ...

FORM ...

*

calculate percentage ...

ENDFORM.

Actual parameters

Formal parameters

· A subroutine is an internal module within a program. In a subroutine, you lift parts of a program out of the main programming block and put them somewhere else. This makes your program easier to read and allows you to use these code segments more than once.

· You can pass data to the subroutine and back through its interface. This allows you to call the same function for different data objects. The example in the graphic shows a subroutine that calculates a percentage. This subroutine is called several times, even though different data objects are passed to the interface in each case.

· Using subroutines makes your program more function oriented: it splits the program's task into subfunctions so that each subroutine is responsible for one subfunction.

· This generally makes programs easier to maintain. In the Debugger, you can execute the subroutines in background so that you see only the result. This usually makes it easier to find the source of the error.

· The structure of a subroutine includes the following:

· Each subroutine starts with FORM and ends with ENDFORM.
· The name of the subroutine is followed by the interface definition.
· The statements that the subroutine executes come between FORM and ENDFORM.

[image: image4.wmf]ã

SAP AG 2001

Ways of Passing Interface Parameters

Passes an address

Passes a value

Passes and returns a value

Call

-

by

-

value

Call

-

by

-

reference

Call

-

by

-

value

-

and

-

result

· You specify how the data is passed from the main program (actual parameters) to the subroutine (formal parameters) in the interface of the subroutine. You can do this in three ways:
· Call-by-value – A local copy of the actual parameter is passed to the subroutine. This means that value assignments to the formal parameter have absolutely no effect on the actual parameter.
· Call-by-reference – A dereferenced address of the actual parameter is passed to the subroutine. This means that value assignments to the formal parameter directly affect the actual parameter. The value of the actual parameter is physically changed by the subroutine through the address.

· Call-by-value-and-result – A local copy of the actual parameter is passed to the subroutine and a value is passed back to the main program only if the ENDFORM statement is executed. This means that value assignments to the formal parameter affect the actual parameter only after they have left the subroutine. Choose this option if you want to make sure that the actual parameter is not changed if the subroutine is terminated prematurely.

[image: image5.wmf]ã

SAP AG 2001

Passing Interface Parameters: Syntax

FORM

subroutine

_

name

USING

value

(f1) ...

CHANGING f2 ...

value

(f3)

...

ENDFORM.

f1

f2

f3

PERFORM

subroutine

_

name

USING a1

CHANGING a2

a3.

a1

a2

a3

USING

USING

value

value

(

(

)

)

value

value

(

(

)

)

CHANGING

CHANGING

USING

USING

CHANGING

CHANGING

· In the interface definition, you list the formal parameters of the different sorts and assign a type to each one. The sequence of parameters is fixed: first you name all the USING parameters, then you name all the CHANGING parameters. Within the subroutine, you address the data that has been passed using the formal parameters.

· The actual parameters are grouped by USING and CHANGING when the subroutine is called.

· You specify the way in which the parameters are to be passed in the interface definition:

· Call-by-value (f1) – You list these parameters after the USING keyword and complete them with the value(f1) addition.
· Call-by-reference (f2) – You list these parameters after the CHANGING keyword. (For documentation purposes, you can also list a pass-by-reference parameter after USING. Technically, USING and CHANGING have exactly the same effect. (However, if you change a parameter listed after USING in the subroutine, you receive a warning in the Extended Program Check.)

· Call-by-value-and-result (f3) – You list these parameters after the CHANGING keyword and complete them with the value(f3) addition

[image: image6.wmf]ã

SAP AG 2001

Interface Parameters: Specified and Inherited Types

TYPES t_

perc

TYPE p DECIMALS 2.

DATA: a1 TYPE ...,

a2 TYPE ...,

a3 TYPE

...

PERFORM

calc

_

perc

USING a1

a2

CHANGING a3.

FORM

calc

_

perc

USING

value

(f_

part

) TYPE i

value

(f_all) TYPE i

CHANGING

value

(f_

pc

) TYPE t_

perc

.

CHECK f_all <> 0.

f_

pc

= f_

part

* 100 / f_all.

ENDFORM.

DATA: a1 TYPE ...,

a2 TYPE ...,

a3 TYPE

...

PERFORM

calc

_

perc

USING a1

a2

CHANGING a3.

FORM

calc

_

perc

USING

value

(f_

part

) TYPE ANY

value

(f_all) TYPE ANY

CHANGING

value

(f_

pc

) TYPE ANY.

CHECK f_all <> 0.

f_

pc

= f_

part

* 100 / f_all.

ENDFORM.

TYPE i

TYPE i

TYPE i

TYPE i

TYPE t_

TYPE t_

perc

perc

Specified type

Inherited type

Risk of type conflicts

· The data objects passed to a subroutine (that is, the actual parameters) can be of any type. If you use elementary types, you can decide whether or not you want to specify the type of the formal parameters.

· By specifying the type of the formal parameters, you ensure that only actual parameters of that type can be passed to the subroutine. This makes your program more stable because the syntax check will find any type conflicts.

· If you use the TYPE ANY addition, you leave the type unspecified. (For compatibility reasons, you can also omit this addition.) In this case, the formal parameter inherits the type from the actual parameter at run time. If the statements in the subroutine are not suited to the inherited type, a runtime error may occur.

· If you assign the types p, n, c or x, the missing type attributes are similarly "inherited" at run time. If you want to specify a type completely, you must use a user-defined type. If you use string or xstring, the type is not fully specified until run time.

· Conversely, the types i, f, d, and t are fully typed.

[image: image7.wmf]ã

SAP AG 2001

Interface Parameters: Specifying Types for

Structures and Internal Tables

DATA

wa

_

flightinfo

TYPE sbc400focc.

...

PERFORM

fill

_

wa

CHANGING

wa

_

flightinfo

.

FORM

fill

_

wa

CHANGING

f_

wa

TYPE sbc400focc.

f_

wa

-

carrid

= ...

.

f_

wa

-

connid

=

ENDFORM.

DATA

it

_

flightinfo

TYPE sbc400_t_sbc400focc.

...

PERFORM

fill

_

itab

CHANGING

it

_

flightinfo

.

FORM

fill

_

itab

CHANGING

f_

itab

TYPE sbc400_t_sbc400focc.

LOOP AT f_

itab

... .

...

ENDLOOP.

ENDFORM.

TYPE sbc400focc

TYPE sbc400focc

TYPE sbc400_t_sbc400focc

TYPE sbc400_t_sbc400focc

Table type

Structure type

Address the parameter as

an internal table

Address the structure

components

· If you use structures or internal tables as formal parameters, you must type them fully. This allows you to access these formal parameters within the subroutine.

· The components of structures are known in the subroutine, as a result of the assigned type, so that you can address these components with the usual syntax.

· If you use internal tables, the assigned type allows you to address the formal parameter as an internal table with the usual syntax.

· Note on performance:
If you use internal tables as parameters, you should generally pass them using pass-by-reference. Otherwise, the system can use considerable resources simply copying them to the subroutine.

[image: image8.wmf]ã

SAP AG 2001

Visibility of Global and Local Data Objects

...

PERFORM

fill

_

itab

CHANGING

it

_

flightinfo

.

FORM

fill

_

itab

CHANGING

f_

itab

TYPE sbc400_t_sbc400focc.

DATA l_

wa

LIKE LINE OF f_

itab

.

LOOP AT f_

itab

INTO l_

wa

.

...

ENDLOOP.

ENDFORM.

Visible globally

Visible locally

DATA:

it

_

flightinfo

TYPE sbc400_t_sbc400focc,

wa

_

flightinfo

TYPE sbc400focc,

...

.

DATA

DATA

· You can define local data within a subroutine.

· Both the formal parameters and the local data objects are active only at the run time of the subroutine. This means that memory is allocated only when the subroutine is called and is released as soon as the subroutine has been executed. Thus these parameters and data objects can be addressed only from within the subroutine.

· The global data objects from the main program can also be addressed from the subroutine. However, you should avoid doing this wherever possible. Otherwise, you bypass the interface, which makes the program more prone to errors.

· If a local data object or formal parameter has the same name as a global data object, the ABAP runtime system addresses the local data object in the subroutine and the global one outside it. These objects are then known as locally obscured objects.

· Summary of hints about gobal and local data objects:

· Address the global data objects in the main program and pass them to the subroutine using the interface.
· Address only formal parameters and local data objects in the subroutine.

· For clarity, avoid using identically named global and local variables. Instead, use a simple prefix, such as f_ for formal parameters and l_ for local data objects.

[image: image9.wmf]ã

SAP AG 2001

Syntax Example: Passing an Internal Table

DATA:

it_flightinfo

TYPE sbc400_t_sbc400focc,

wa

_flightinfo

TYPE sbc400focc,

lines TYPE i.

...

PERFORM count_lines USING

it_flightinfo

'LH'

CHANGING lines.

FORM

count_lines USING f_itab TYPE sbc400_t_sbc400focc

f_

carr

TYPE sbc400focc

-

carrid

CHANGING value(f_lines) TYPE i.

DATA l_wa LIKE LINE OF f_itab.

CLEAR f_lines.

LOOP AT f_itab INTO l_wa

WHERE carrid = f_

carr

.

ADD 1 TO f_lines.

ENDLOOP.

ENDFORM.

· The example in the graphic shows a main program calling a subroutine, which specifies the number of lines of an internal table needed to fulfill a specific criterion.

· The internal table, f_itab, and the comparison value, f_carr, are passed by reference to improve performance. The number of lines, f_lines, is passed by value-and-result.

· To loop through the internal table, you need a work area with a compatible line type, which you define locally in the subroutine, by making a reference to the formal parameter.

[image: image10.wmf]ã

SAP AG 2001

Calling Subroutines

System Help

System Help

Z00_FORM

ABAP Editor: Changing the Report Z00_FORM

Subroutines

COUNT_LINES

FORM

count

_

lines

USING f_

itab

TYPE ...

f_carr TYPE ...

CHANGING

value

(f_

lines

) TYPE

...

ENDFORM.

PERFORM

count

_

lines

USING

f_

itab

f_carr

CHANGING

f_

lines

.

2 :

Adapt the actual

parameters

+

1 :

"

drag

-

and

-

drop

"

· A subroutine is called using the PERFORM statement.

· When the subroutine is called, parameters are passed to it in strict sequence.

· For this reason, you should define the subroutine first and then call it. The Object Navigator supports you in this respect: You can generate the PERFORM statement by dragging the subroutine from the navigation area to the editor area.

· Alternatively, you can generate the call using the Pattern function in the ABAP Editor.

· This prevents you from mixing up or forgetting any parameters. However, you must remember to replace the formal parameters with actual parameters.

[image: image11.wmf]ã

SAP AG 2001

Subroutines in Debugging Mode

Variant

ZJJ_KURS_000

ZJJ_FORMS

1

4

-

Variant

4

6

FORM count_lines USING f_itab TYPE ...

f_carr TYPE ...

CHANGING value(f_lines) TYPE

DATA l_wa LIKE LINE OF f_itab.

Fixed point arithmetic

15

30

-

5

6

X

SAP

Watchpoint

ABAP Debugger

a

a

chws

chws

SY

-

SUBRC

SY

-

TABIX

SY

-

DBCNT

0

0

1

f_carr

LH

Execute

Return

· In debugging mode, you can make a subroutine run without stopping. The execution of the main program does not stop until after the subroutine has been executed.

· Alternatively, you can execute the subroutine statement by statement using Single Step.

· If the current statement is located in a subroutine, you can run the rest of the subroutine without it stopping by selecting Return (F7). Execution of the main program does not stop until after the subroutine is executed.

[image: image12.wmf]ã

SAP AG 2001

l

Define subroutines

l

Call subroutines

l

Analyze the execution of subroutines in

debugging

mode

You

are now able to:

Internal Program Modularization with Subroutines:

Unit Summary

Modularization Exercises

	[image: image13.png]

	Unit: Internal Program Modularization

Topic: Subroutines

	[image: image14.png]

	At the conclusion of these exercises, you will be able to:

· Create subroutines

· Use the subroutine interface to pass data

	[image: image15.wmf]

	Change your program ZBC400_##_SELECT_SFLIGHT_ITAB (or the corresponding model solution) so that the display of the data in a list is encapsulated in a subroutine.

	[image: image16.jpg]

	Template:
ZBC400_##_AUTHORITY_CHECK_2 or

SAPBC400DDS_AUTHORITY_CHECK_2
Program:
ZBC400_##_SUBROUTINE
Model solution:
SAPBC400PBS_SUBROUTINE

1-1
Copy your program ZBC400_##_AUTHORITY_CHECK_2 or the corresponding model solution SAPBC400DDS_AUTHORITY_CHECK_2 to the new program ZBC400_##_SUBROUTINE.

1-2
Encapsulate the display of data in a list in a subroutine. Call the subroutine (suggested name: WRITE_LIST) after the SELECT loop. Pass the internal table containing the data that has been read using the interface.

1-3
Define the subroutine and specify types for the interface parameters.

1-4
Display the data from the subroutine using a LOOP… ENDLOOP structure. To do this, create the required table work area as a local data object in the subroutine. To specify the type of the local structure, use the ABAP statement DATA <wa> LIKE LINE OF <itab>.

Modularization Solutions

	[image: image17.png]

	Unit: Internal Program Modularization

Topic: Subroutines

Model solution SAPBC400PBS_SUBROUTINE

&--

*& Report SAPBC400PBS_SUBROUTINE *
*& *

&--

REPORT sapbc400pbs_subroutine.
CONSTANTS actvt_display TYPE activ_auth VALUE '03'.
DATA: wa_flight TYPE sbc400focc,
 it_flight TYPE sbc400_t_sbc400focc.
PARAMETERS: pa_car TYPE sflight-carrid.
START-OF-SELECTION.
* Authority-Check:
 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD pa_car
 ID 'ACTVT' FIELD actvt_display.
 CASE sy-subrc.
* User is authorized
 WHEN 0.
 SELECT carrid connid fldate seatsmax seatsocc FROM sflight
 INTO CORRESPONDING FIELDS OF wa_flight
 WHERE carrid = pa_car.
 wa_flight-percentage =
 100 * wa_flight-seatsocc / wa_flight-seatsmax.
 APPEND wa_flight TO it_flight.
 ENDSELECT.
 PERFORM write_list USING it_flight.
* User is not authorized or other error of authority-check
 WHEN OTHERS.
 WRITE: / 'Authority-Check Error'(001).
 ENDCASE.
&--

*& Form WRITE_LIST
&--

* text

* -->P_IT_FLIGHT text

FORM write_list USING p_it_flight TYPE sbc400_t_sbc400focc.
 DATA: wa LIKE LINE OF p_it_flight.
 LOOP AT p_it_flight INTO wa.
 WRITE: / wa-carrid COLOR COL_KEY,
 wa-connid COLOR COL_KEY,
 wa-fldate COLOR COL_KEY,
 wa-seatsocc,
 wa-seatsmax,
 wa-percentage,'%'.
 ENDLOOP.
ENDFORM. " WRITE_LIST
© SAP AG
TAW10
12-15

