
0 [image: image1.wmf]ã

SAP AG 2001

l

Data Types and Data Objects

l

Basic ABAP Statements

l

Using the ABAP Debugger

l

Working with Structures

l

Working with Internal Tables

Contents:

Basic ABAP Language Elements

[image: image2.wmf]ã

SAP AG 2001

l

Define elementary and structured data objects

l

Use basic ABAP statements

l

Execute and analyze programs in debugging

mode

At the conclusion of this unit, you will be able to:

Basic ABAP Language Elements: Unit Objectives

[image: image3.wmf]ã

SAP AG 2001

Data Types and Data Objects

Data Types and Data Objects

Data Types and Data Objects

Basic ABAP Statements

Basic ABAP Statements

Using the ABAP Debugger

Using the ABAP Debugger

Working with Structures

Working with Structures

Working with Internal Tables

Working with Internal Tables

[image: image4.wmf]ã

SAP AG 2001

Using Data Types

ABAP program

Subroutine

Interface

Interface

Function module

Object

Method

Interface

Interface

Data types describe the attributes of:

… Input / output fields

… Data objects

...

Interface parameters

...

Interface parameters

… Interface parameters

· The type of a data object defines its technical attributes.

· The type of an interface parameter defines the type of the values (actual parameters) that are transferred when the modularization unit is called.

· In addition to the technical attributes, the type of an input or output field can provide further information; for example, you can use it to control the value or input help.

[image: image5.wmf]ã

SAP AG 2001

Local and Global Data Types

ABAP program

Subroutine

Interface

Interface

Function module

Object

Method

Interface

Interface

ABAP

Dictionary

Local data types: Technical

attributes only

Central data types: Technical and

semantic attributes

· You can define data types in an ABAP program (local, keyword TYPES) or in the ABAP Dictionary (global). Using global data types has several advantages:

· Global types are managed centrally and you can use them in all repository objects. This increases the consistency of the system and significantly reduces the amount of maintenance.

· In the ABAP Dictionary, you can perform an environment analysis (where-used list).

· Global data types can be linked to business variables by content, and therefore contain semantic and technical information.

· You can use global datat types to design screens.

· When searching for global data types, make sure you take both the technical and semantic attributes into account. Only then will you be able to make full use of the maintenance and robustness advantages of your program.

[image: image6.wmf]ã

SAP AG 2001

Defining Data Objects

Predefined

ABAP types

x

Local types

i

f

string

xstring

t

d

Global

types

c

n

p

TYPES type_name TYPE ...

DATA do_name TYPE type_name.

DATA

DATA

DATA do_name_new LIKE do_name.

DATA

DATA

· You can use a predefined ABAP type, a local, or a global type to type a data object.

· The following predefined ABAP types are complete:

· d

Date (format: YYYYMMDD)

· t

Time (format: HHMMSS)

· i

Integer

· f

Floating point number

· string
String (of variable length)

· xstring
Byte sequence (heXadecimal string, of variable length)

· You must define the length for these predefined types:
· c Character
· n
Numeric character
· x Byte (heXadecimal)

· p
Packed number (= binary coded decimals). You must enter the number of decimal

places.
· For more information on predefined ABAP types, refer to the keyword documentation on TYPES or DATA.
· You can use LIKE to refer to the type of a predefined data object.

[image: image7.wmf]ã

SAP AG 2001

Defining Elementary Data Objects

S_CARR_ID

Data

element

TYPES t_percentage(3) TYPE p DECIMALS 2.

DATA: number TYPE i VALUE 17,

percentage TYPE t_percentage,

carrid TYPE s_carr_id,

connid TYPE sbc400focc

-

connid.

number

percentage

carrid

+

connid

SBC400FOCC

Structure

17

· The predefined ABAP types (d, t, i, f, string, and xstring) are complete. This means they can define an elementary data object of these types as follows:
DATA do_name TYPE predefined_ABAP_type.
· For the predefined ABAP types c, n, p, and x, you must define the length. This means you should first define an elementary type:
TYPES type_name(length) TYPE predefined_ABAP_type.
You use it to define the data object:
DATA do_name TYPE type_name.
For type p, you can also define the number of decimal places using the DECIMALS addition.

· You can use the VALUE addition to pre-assign the value of an elementary data object.

· For compatibility reasons, you can still construct data objects in the DATA statement without first having to define the type locally in the program with a TYPES statement.

· In the case of incompletely predefined ABAP types, the system adds standard values to make up the missing type information.

· If there is no type specification at all, the system defines a type c data object with a length of one.For the standard lengths and for more information, refer to the keyword documentation for TYPES and DATA.

· The same syntax applies to global types as to user-defined types:
DATA do_name TYPE global_type_name

[image: image8.wmf]ã

SAP AG 2001

Fixed Data Objects

Literal:

Literal:

Constant:

Constant:

Fixed data object with ID code

Fixed data object without ID code

Numeric literal:

Positive integers: 123

Negative integers:

-

123

Numeric literal: Type i or p

Numeric literal: Type i or p

Text literal

Character string: 'aBcdE'

Decimal numbers: '123.45'

Floating point numbers: '123.45E01'

Text literal: Type c

Text literal: Type c

CONSTANTS const_name TYPE type_name VALUE [literal | IS INITIAL

].

CONSTANTS

CONSTANTS

· You assign a value to each fixed data object in the source code. Therefore, it cannot be changed at run time.

· You can use literals to transfer fixed values to ABAP statements. There are numeric literals and text literals. The latter are always enclosed in inverted commas:

· You can display integers as numeric literals (in the case of negative numbers, with a preceding sign). The system then maps them onto the data type i, if they are within the value range of 4-byte integers. Higher numeric literals are mapped onto data type p.

· You must display all other literals (such as character sets, numbers with decimal places, floating point numbers) as text literals. They are mapped onto data type c and converted later, if necessary.
If you want to include an inverted comma in a text literal, you must enter it twice.

· You define constants using the CONSTANTS statement. Their type is defined similarly to the type of an elementary data object with the DATA statement. The VALUE addition is required for constants

· Recommendation: Avoid literals when using statements. Create constants instead. This significantly improves program maintenance.

[image: image9.wmf]ã

SAP AG 2001

Basic ABAP Statements

Data Types and Data Objects

Data Types and Data Objects

Basic ABAP Statements

Basic ABAP Statements

Using the ABAP Debugger

Using the ABAP Debugger

Working with Structures

Working with Structures

Working with Internal Tables

Working with Internal Tables

[image: image10.wmf]ã

SAP AG 2001

Value Assignments

ABAP runtime system

MOVE c_qf TO carrid1.

carrid2 = carrid1.

ADD 1 TO counter.

CLEAR: carrid1,

carrid2,

counter.

Time

CONSTANTS c_qf TYPE s_carr_id VALUE 'QF'.

DATA: carrid1 TYPE s_carr_id,

carrid2 TYPE s_carr_id VALUE 'LH',

counter TYPE i.

Program start

Program start

Data declarations

MOVE

MOVE

CLEAR

CLEAR

c_qf

QF

carrid1

carrid2

LH

counter

0

ABAP program

QF

LH

0

QF

QF

0

QF

QF

1

0

· When a program is started, the program context is loaded into a storage area of the application server and made available for all the data objects.

· Every elementary data object is preassigned the type-related initial value, except if you preassigned a different value using the VALUE addition.

· You can use the MOVE statement to copy the contents of data objects. Two statements are available for this purpose:

· MOVE source TO target.
· target = source.
· If the two data objects have different types, the type is automatically converted if there is a conversion rule.

· For detailed information about copying and the conversion rules, refer to the keyword documentation for the MOVE statement.

· The CLEAR statement resets the contents of a data object to the type-related initial value. For detailed information about the initial values for a particular type, refer to the keyword documentation for the CLEAR statement.

[image: image11.wmf]ã

SAP AG 2001

Calculations

COMPUTE percentage = occ * 100 / max.

DATA: max TYPE sbc400focc

-

seatsmax,

occ TYPE sbc400focc

-

seatsocc,

percentage TYPE sbc400focc

-

percentage.

Data declarations

COMPUTE

COMPUTE

The keyword is optional:

percentage = occ * 100 / max.

ABAP program

*

*

/

/

· In ABAP you can program arithmetic expressions nested to any depth. Note that parentheses and operators are keywords and must be separated by at least one blank character.
The following are valid operators:

+
Addition
-
Subtraction
*
Multiplication
/
Division
**
Power
DIV
Integer division without remainder
MOD
Integer division with remainder

· There are several functions for different data types in the ABAP runtime environment.
For example, the following statement returns the current length of the contents of a character set:
length = STRLEN(cityfrom).
With functions the opening parenthesis is part of the ID. The rest must again be separated by at least one space.

· In general, the usual algebraic rules apply for the processing sequence: expressions in parentheses come first, then powers, then multiplication/division, and finally addition/subtraction.

· For detailed information about the available operations and functions, refer to the keyword documentation for COMPUTE..

[image: image12.wmf]ã

SAP AG 2001

CASE data_object_1.

WHEN data_object_2.

WHEN data_object_3 OR data_object_4.

WHEN OTHERS.

ENDCASE.

Statements

Statements

Statements

IF <logical_expression>.

ELSEIF <logical_expression>.

ELSE.

ENDIF.

Statements

Statements

Statements

Conditional Branching

CASE

CASE

WHEN

WHEN

WHEN

WHEN

WHEN OTHERS

WHEN OTHERS

ENDCASE

ENDCASE

IF

IF

ELSEIF

ELSEIF

ELSE

ELSE

ENDIF

ENDIF

OR

OR

· In ABAP you have two ways to execute different sequences of statements, depending on certain conditions.

· With the CASE-ENDCASE construction the criterion for the execution of a statement block is the similarity of the data objects. If no comparison is successful, then the system executes the OTHERS branch, if it is available.
Except for the first WHEN branch, all further additions are optional.

· With the IF-ENDIF construction, you can use any logical expressions. If the condition is met, the system executes the relevant statement sequence. If no comparison is successful, then the system executes the OTHERS branch, if it is available. Except for the first query, all further branches are optional.

· For both constructions, the system executes only one statement sequence and always for the first valid case.

· Recommendation:
If, in every condition, you check that a variable is equal to a given value, use the CASE-ENDCASE construction. It is clearer and less runtime intensive.

· Outside of loops you can also use CHECK instead of IF. This query sets the execution of all statements up to the end of the current processing block under one condition. If this is unsuccessful, the system continues with the first statement in the next processing block.

[image: image13.wmf]ã

SAP AG 2001

Loops

DO [n TIMES] [...].

ENDDO.

WHILE <logical_expression>.

ENDWHILE.

LOOP AT ...

ENDLOOP.

SELECT ...

ENDSELECT.

DO.

IF <abort_condition>.

EXIT.

ENDIF.

ENDDO.

Loop counter:

sy

-

index

Loop counter:

sy

-

index

Statements

Statements

Statements

Statements

Statements

· In ABAP there are four loop constructions, whereby LOOP-ENDLOOP and SELECT-ENDSELECT represent special cases. In the DO and WHILE loops, the system stores the number of the current loop pass in the sy-index field. If these loops are nested, sy-index contains the number of the current (that is, inner) loop.
· Unconditional/index controlled loops
The statements between DO and ENDDO are executed until the loop is left over other statements. You also have the option of specifying the maximum number of loop passes; otherwise, you may get an endless loop.

· Header controlled loops
The statements between WHILE and ENDWHILE are executed only if the condition <logical_expression> has been met.

· You can use the statements CHECK and EXIT for different effects on the way the loop is processed. For example, you can construct a footer-controlled loop.

[image: image14.wmf]ã

SAP AG 2001

Dialog Messages

MESSAGE

tnnn

(

message_class

) [WITH

v1

[

v2

] [

v3

] [

v4

]].

Type

t

Behavior

Message appears in

s

i

w

e

a

x

Program continues without

interruption

Program continues after

interruption

Context dependent

Context dependent

Program aborted

Runtime error

MESSAGE_TYPE_X

is triggered

Status line in next screen

Modal dialog box

Status bar

Status bar

Modal dialog box

Short dump

Meaning

Status message

Information

Warning

Error

Termination

Short dump

· You can use the MESSAGE statement to send dialog messages. You must specify the three-digit message number and the message class.

· Furthermore, you can use the WITH addition to include up to four values. The system, depending on the message text, inserts these values into the message text.

· You control the dialog behavior using the type abbreviation “t”. There are six different types of message:

a
Abort
The program is ended after a dialog box.

x
Exit
The program ends in a short dump.

e
Error
Runtime behavior is context dependent.

w
Warning
Runtime behavior is context dependent.

i
Information
The program continues after a dialog box.

s
Success
The message appears in the status bar on the subsequent screen.

· For further information about the syntactic alternatives of the MESSAGE statement, refer to the keyword documentation.

[image: image15.wmf]ã

SAP AG 2001

Runtime Behavior of Dialog Messages

Editor Help

ABAP Overview

ABAP Term

ABAP News

ABAP Docu and Examples

Help

i

ABAP Documentation and Examples

?

?

?

?

?

BC

-

ABAP Programming

ABAP Introduction

ABAP Programming Language

ABAP User Dialogs

Screens

Selection Screens

Lists

Messages

Simple example for messages

Demonstration for all message types

...

?

?

?

?

· Depending on the context in which they appear, some message types show different dialog behavior.

· You can find a program for testing the resulting options in the ABAP documentation. To access these example programs, choose Utilities  Help onABAP doc. and examples (in the following dialog box)

[image: image16.wmf]ã

SAP AG 2001

Using the ABAP Debugger

Data Types and Data Objects

Data Types and Data Objects

Basic ABAP Statements

Basic ABAP Statements

Using the ABAP Debugger

Using the ABAP Debugger

Working with Structures

Working with Structures

Working with Internal Tables

Working with Internal Tables

[image: image17.wmf]ã

SAP AG 2001

Executing a Program in Debugging Mode

Program

ZBC400_00_GS

ZBC400_00_GS

REPORT sapbc400wbt_getting_started.

TABLES sbc400_carrier.

DATA

wa_scarr TYPE scarr.

PARAMETERS pa_car TYPE scarr

-

carrid.

START

-

OF

-

SELECTION.

SELECT SINGLE * FROM scarr

INTO CORRESPONDING

WHERE carrid = pa_car.

IF sy

-

subrc = 0.

MOVE

-

CORRESPONDING wa_scarr TO sbc4

CALL SCREEN 100.

MOVE

-

CORRESPONDING sbc400_carrier T

WRITE:/ wa_scarr

-

carrid,

wa_scarr

-

carrname,

Execute

Debugging

Use the context menu

Or:

Set a breakpoint and

execute the program

· You can start a program in Debugging mode from the Object Navigator, without having to change the program in two ways:

· In the navigation area, choose Execute  Debugging for the selected program.

· In the editing area, select the desired program line and choose Set/delete breakpoint. Then start the program by choosing Execute Direct processing (F8)

[image: image18.wmf]ã

SAP AG 2001

Switching to Debugging Mode at Runtime

/h

System Help

System Help

Utilities

Debug screen

Debug ABAP

Enter ‘/h’ into the command

field

and then select <Enter>

Or:

Choose menu

System

· If you want to debug only certain parts of a program, start the program first and then switch to debugging mode before a screen change. You can do this in two ways:

· Choose System Utilities Debug ABAP or Debug screen.

· Enter /h in the command field and select Enter.

[image: image19.wmf]ã

SAP AG 2001

Debugging Mode: Single Step and Field Contents

Field

Name

ZJJ_FORMS

1

4

-

Field Value

4

6

SELECT SINGLE * FROM scarr

INTO CORRESPONDING FIELDS OF wa_scarr

WHERE carrid = pa_carr.

IF sy

-

subrc = 0.

MOVE

-

CORRESPONDING wa_scarr TO sbc400_carrier.

CALL SCREEN 100.

MOVE

-

CORRESPONDING sbc400_carrier TO wa_scarr.

Fixed point arithmetic

15

30

-

5

6

X

SAP

Watchpoint

ABAP Debugger

a

a

chws

chws

r

SY

-

SUBRC

SY

-

TABIX

SY

-

DBCNT

0

0

1

Double

-

click the

data object

pa_carr

LH

Current statement

Single step

· In debugging mode, you can choose Single step to execute the program statement by statement.

· You can display the contents of up to eight data objects. Enter the names in the left input field or double-click the name in the displayed source code.

[image: image20.wmf]ã

SAP AG 2001

Debugging Mode: Breakpoints

Variant

1

4

-

Variant

6

SELECT SINGLE * FROM scarr

INTO CORRESPONDING FIELDS OF wa_scarr

WHERE carrid = pa_carr.

IF sy

-

subrc = 0.

MOVE

-

CORRESPONDING wa_scarr TO sbc400_carrier.

CALL SCREEN 100.

MOVE

-

CORRESPONDING sbc400_carrier TO wa_scarr.

Fixed point arithmetic

15

30

-

5

6

X

SAP

Watchpoint

ABAP Debugger

a

a

chws

chws

4

SY

-

SUBRC

SY

-

TABIX

SY

-

DBCNT

0

0

1

Continue

· To set a breakpoint, double-click in front of a line of source code.

· To set a breakpoint for a specific ABAP statement, choose: BreakpointBreakpoint at Statement.

· If you choose Continue, the program is executed up to the next breakpoint.

· If you Save the breakpoints, they remain intact while you are logged on to the system.

· With breakpoints, the ABAP Workbench switches to debugging mode only for the developer who set the breakpoints. All other users can execute the program directly or set their own breakpoints

[image: image21.wmf]ã

SAP AG 2001

Debugging Mode: Tracing Data Changes

Watchpoint

Create/Change Watchpoint

Local watchpoint (only in specified program)

Program

Field name

Relational operator

Comp. field/value

Comparison field (Comparison value if not selected)

pa_carr

=

LH

1

2

3

...

10

OR

AND

pa_carr

LH

=

No.

Local

Program

Field name

Field

Operator

Comp. field/value

Logical operator between watchpoints

Watchpoints

· Watchpoints are breakpoints that depend on the field content. You can create the following types of watchpoints:

· Field name:
The program is executed until the content of the field has changed.
· Field name, relational operator, comparison value:
The program is executed until the content of the field has changed so that the defined logical condition, relative to a value, is met.

· Field name, relational operator, comparison value:
The program is executed until the content of the field has changed so that the defined logical condition, relative to the content of a field, is met.

· You can set up to 10 watchpoints and link them using the logical operators AND or OR.

[image: image22.wmf]ã

SAP AG 2001

Working with Structures

Data Types and Data Objects

Data Types and Data Objects

Basic ABAP Statements

Basic ABAP Statements

Using the ABAP Debugger

Using the ABAP Debugger

Working with Structures

Working with Structures

Working with Internal Tables

Working with Internal Tables

[image: image23.wmf]ã

SAP AG 2001

Definition of Structures with

Global Types

DATA wa_focc TYPE sbc400focc.

TABLES spfli.

DATA

DATA

TABLES

TABLES

wa_focc

carrid

seatsmax

connid

fldate

seatsocc

percentage

spfli

carrid

cityfrom

connid

countryfr

airpfrom

mandt

...

countryto

SBC400FOCC

Structure

SPFLI

Transparent

table

· In ABAP, you can define structured data objects (simply called structures). This allows you to combine values that belong together logically into one object.

· Structures can be nested. This means that components can consist of more structures or even tables.

· There are two ways to define structures:

· For DATA struc_name TYPE struc_type, you can use local or global types struc_type.

· TABLES global_struc_type defines a structure that is technically managed in a special memory area. It has the same name as the global structure, global_struc_type.
For this variant, the global structure must be flat, that is, all components must have an elementary type. Since Release 4.0, TABLES structures serve only as interfaces for screen fields..

[image: image24.wmf]ã

SAP AG 2001

Definition of Structures with

Local Types

TYPES: BEGIN OF

st

_

flightinfo

,

carrid TYPE s_carr_id,

connid TYPE s_

conn

_id,

fldate TYPE s_date,

seatsmax TYPE

sflight

-

seatsmax,

seatsocc TYPE

sflight

-

seatsocc,

percentage(3) TYPE p DECIMALS 2,

END OF

st

_

flightinfo

.

DATA wa_

flightinfo

TYPE

st

_

flightinfo

.

BEGIN OF

BEGIN OF

wa_

flightinfo

carrid

seatsmax

connid

fldate

seatsocc

percentage

END OF

END OF

· You can also define structure types locally using the TYPES statement. The components are enclosed by the following statements as shown in the graphic:
BEGIN OF structure_type_name.
 ...
END OF structure_type_name.
Each individual component can in turn be assigned any type you wish.

· For more information, refer to the keyword documentation for TYPES.

· You define the data object itself in the usual way.

· For compatibility reasons, you can also directly define a structured data object:
DATA: BEGIN OF structure_name
 ...
 END OF structure_type_name
[image: image25.wmf]ã

SAP AG 2001

Addressing Structure Components

DATA: wa_scarr TYPE scarr.

wa_scarr

-

carrid = 'LH'.

SELECT SINGLE * FROM scarr

INTO wa_scarr

WHERE carrid = wa_scarr

-

carrid.

WRITE:/ wa_scarr

-

carrid,

wa_scarr

-

carrname,

wa_scarr

-

url

.

-

-

wa_scarr

mandt

currcode

carrid

carrname

url

-

-

-

-

-

-

-

-

· Components of a structure are always addressed using a hyphen:
structure_name-component_name.
· For this reason, do not use hyphens in names.

[image: image26.wmf]ã

SAP AG 2001

Copying Structure Components with the Same Name

DATA: wa_

sflight

TYPE

sflight

,

wa_focc TYPE sbc400focc.

MOVE

-

CORRESPONDING wa_

sflight

TO wa_focc.

MOVE

MOVE

-

-

CORRESPONDING

CORRESPONDING

wa_focc

carrid

seatsmax

connid

fldate

seatsocc

percentage

wa_

sflight

carrid

...

connid

fldate

seatsmax

mandt

...

seatsocc

TO

TO

· The statement MOVE-CORRESPONDING source_struc TO target_struc copies the contents of the structure source_struc into the structure target_struc component by component. The value assignment works only if the components have identical names.

· All other components remain unchanged.

[image: image27.wmf]ã

SAP AG 2001

Structures in Debugging Mode

Variant

Main program

Source code of

4

SELECT SINGLE * FROM scarr

INTO CORRESPONDING FIELDS OF wa_scarr

WHERE carrid = pa_carr.

IF sy

-

subrc = 0.

MOVE

-

CORRESPONDING wa_scarr TO sbc400_carrier.

CALL SCREEN 100.

MOVE

-

CORRESPONDING sbc400_carrier TO wa_scarr.

Fixed point arithmetic

-

5

6

X

SAP

Watchpoint

ABAP Debugger

a

a

chws

chws

Fields

SY

-

SUBRC

0

wa_sbc400

No.

Component name

Type

Length

Contents

1

2

3

4

5

6

7

8

MANDT

CARRID

CARRNAME

CURRCODE

MARK

UNAME

UZEIT

DATE

C

C

C

C

C

C

T

D

3

3

20

5

1

12

6

8

100

AA

American Airlines

USD

000000

00000000

Structured field

Length (in bytes)

wa_sbc400

58

Double

-

click the

data object

· You can trace the field contents of a structure by entering the name of the structure in the left column. Double-click this entry to see the component display.

[image: image28.wmf]ã

SAP AG 2001

Working with Internal Tables

Data Types and Data Objects

Data Types and Data Objects

Basic ABAP Statements

Basic ABAP Statements

Using the ABAP Debugger

Using the ABAP Debugger

Working with Structures

Working with Structures

Working with Internal Tables

Working with Internal Tables

[image: image29.wmf]ã

SAP AG 2001

Internal Tables

Table can be

extended dynamically

· Internal tables are data objects that allow you to retain several data records with the same structure in memory. In principle, the number of data records is unlimited. It is restricted only by the capacity limits of specific system installations.

· The ABAP runtime system dynamically manages the length of internal tables. This eliminates any work concerning working memory management.

· The individual data records in an internal table are known as table lines or table entries. For this reason, the individual components in a line are referred to as columns of the internal table.

· The line type of an internal table can be any ABAP data type, elementary or structured, or it can be another internal table.

· Internal tables are a simple way of processing large data records in a structured form within a program. Typical uses include:

· Temporarily storing data from database tables for future processing

· Structuring and formatting data for output

· Formatting data for use by other services

[image: image30.wmf]ã

SAP AG 2001

Attributes of Internal Tables

AA

0017

2,572

LH

0400

6,162

QF

0005

10,000

Index access

Index access

LH

0400

7,273

5

Key access

Key access

UA 0007

Line type

Line type

Line type

Key definition

Key definition

Key definition

Data access type

Data access type

Data access type

CARRID CONNID DISTANCE

CARRID CONNID DISTANCE

SQ

0866

1,625

UA

0007

2,572

•

•

Components

Components

•

•

Sequence

Sequence

•

•

Unique / non

Unique / non

-

-

unique key

unique key

Line index

Line index

5

4

3

2

1

6

· The data type of an internal table is completely specified by the following attributes:

· Line type
This is the source of the attributes of the individual columns. You normally specify a structure type but any data types are possible.

· Key definition
The key columns and their order define the criteria by which the tables are identified. Depending on the access type, the key can be defined as unique or non-unique. With unique keys there are no multiple entries with identical values in the key.

· Data access type
· With a key access – as with database tables – you access using the field contents.
Example: A read access using the search term 'UA 0007' to an internal table with the unique key CARRID CONNID and the data pictured above returns exactly one data record.

· Index access: Unlike database tables, with internal tables the system may number the lines and give the line an index. You can use this idex to access a specific table line.
Example: A read access to a data record with index 5 returns the fifth data record of the internal table

[image: image31.wmf]ã

SAP AG 2001

Index access

Key access

Unique /

NON

-

UNIQUE

UNIQUE | NON

-

UNIQUE

UNIQUE

Non

-

Unique Key

Access Using

Mainly index

Mainly keys

Keys only

HASHED TABLE

HASHED TABLE

STANDARD TABLE

STANDARD TABLE

SORTED TABLE

SORTED TABLE

Connection Between Table Kind and Access Type

Index tables

Hashed table

Table type

n

n

· Another internal table attribute is the table type. Internal tables can be divided into three table types according to the respective access types:

· With standard tables the line numbering is maintained internally. Both index and key accesses are possible.

· With sorted tables the data records are always sorted according to key and saved. Here too, the index is maintained internally. Both index and key accesses are possible.

· With hashed tables the data records are managed optimized at run time. A unique key is a requirement. With hashed tables only key accesses are possible.

· Which table type you use in each case, depends on how that table's entries are generally going to be accessed:

· For index accesses you should normally use standard tables.

· Sorted tables are best for unique keys and fixed sorting.

· With hashed tables the runtime optimization is noticeable only if the accesses are of the read type with a unique key.

· This course deals with standard tables only. Apart from a few special cases, the syntax is identical for all three table types.

[image: image32.wmf]ã

SAP AG 2001

Definition of Internal Tables with

Global Types

Line type and access

Key

Key definition

Key category

Key components

Line type

Data access type

SBC400FOCC

Standard table

Key components

Non

-

unique

CARRID

CONNID

FLDATE

SBC400_T_SBC400FOCC

SBC400_T_SBC400FOCC

Table type

Table type

DATA

itab

_

flightinfo

TYPE sbc400_t_sbc400focc.

DATA

DATA

itab

_

flightinfo

carrid

seatsmax

connid

fldate

seatsocc

percentage

· Table types can be defined locally in a program or globally in the ABAP Dictionary.

· For DATA itab_name TYPE itab_type you can use local or global types itab_type.

· For detailed information on the definition of global table types in the ABAP Dictionary, refer to the SAP Library under Basis ABAP Workbench BC-ABAP Dictionary Types Table types.

[image: image33.wmf]ã

SAP AG 2001

Definition of Internal Tables with

Local Types

TYPES:

tt

_

flightinfo

TYPE STANDARD TABLE OF sbc400focc

WITH NON

-

UNIQUE KEY carrid connid fldate.

DATA

itab

_

flightinfo

TYPE

tt

_

flightinfo

.

STANDARD TABLE OF

STANDARD TABLE OF

itab

_

flightinfo

carrid

seatsmax

connid

fldate

seatsocc

percentage

WITH NON

WITH NON

-

-

UNIQUE KEY

UNIQUE KEY

· You can also define internal table types locally using the TYPE statement.

· The table type is specified between TYPE and TABLE OF.

· The line type comes after TABLE OF.

· The key fields are listed after the WITH addition. Note that the order of the key fields plays a part here.

· For detailed information about defining local table types, refer to the keyword documentation on TYPES.

· You define the data object itself in the usual way.

For compatibility reasons, you can also directly define an internal table as follows:
DATA itab_name TYPE table_kind TABLE OF struc_type WITH key_def.

· [image: image34.wmf]ã

SAP AG 2001

Overview: Typing Structured Data Objects

DATA wa TYPE spfli.

SELECT ...

FROM spfli

INTO wa ...

TABLES sbc400focc.

DATA wa TYPE

sbc400focc.

DATA it TYPE

sbc400_t_sbc400focc.

ABAP program

ABAP Dictionary

Database

SPFLI

SPFLI

Transparent table

Transparent table

(Description)

SBC400FOCC

SBC400FOCC

Structure

Structure

SBC400FOCC

SBC400FOCC

Structure

Structure

SBC400_T_SBC400FOCC

SBC400_T_SBC400FOCC

Table type

Table type

AA

17

...

AA

64

...

...

...

...

LH

400

...

LH

402

...

AA

17

...

AA

64

...

...

...

...

LH

400

...

LH

402

...

SPFLI

[image: image35.wmf]ã

SAP AG 2001

Overview: Accessing Single Records

Append

Insert

Read

Change

Delete

APPEND wa TO

itab

.

INSERT wa INTO TABLE

itab

<condition>.

READ TABLE

itab

INTO wa <condition>.

MODIFY TABLE

itab

FROM wa [<condition>].

DELETE

itab

<condition>.

APPEND

APPEND

INSERT

INSERT

READ TABLE

READ TABLE

MODIFY

MODIFY

DELETE

DELETE

· The following single record operations are available for internal tables: In each case wa represents a structure that must have the same type as the line type of the internal table itab.

· APPEND
Appends the contents of a structure to an internal table. This operation should be used with standard tables only.

· INSERT
Inserts the contents of a structure into an internal table. In a standard table it is appended, in a sorted table it is inserted in the right place, and in a hashed table it is inserted according to the hash algorithm.

· READ
Copies the contents of a line in an internal table to a structure.

· MODIFY
Overwrites a line in an internal table with the content of a structure.

· DELETE
Deletes a line of an internal table.

· COLLECT
Accumulates the contents of a structure into an internal table. This statement
may be used only for tables whose non-key fields are all numeric. The

numeric values are summarized for identical keys

· For detailed information about the ABAP statements described here, refer to the relevant keyword documentation.

[image: image36.wmf]ã

SAP AG 2001

Overview: Processing Sets of Records

Loop: For all single

record operations

LOOP AT

itab

INTO wa <condition>.

ENDLOOP..

DELETE

itab

<condition>.

INSERT LINES OF itab2

<condition2>

INTO itab1 <condition1>.

Delete

Inserting several

lines from another

internal table

LOOP

LOOP

ENDLOOP

ENDLOOP

DELETE

DELETE

INSERT

INSERT

Appending several

lines from another

internal table

INSERT LINES OF itab2

<condition1> TO itab1.

APPEND

APPEND

· The following set operations are available for internal tables: In each case wa represents a structure that must have the same type as the line type of the internal table itab.

· LOOP ... ENDLOOP
The LOOP places the lines of an internal table one by one into the structure specified in the INTO clause. All single record operations can be executed within the loop. In this case, for the single record operations, the system identifies the line to be processed.
· DELETE
Deletes the lines of the internal table that satisfy the condition <condition>.

· INSERT
Copies the contents of several lines of an internal table to another internal table.

· APPEND
Appends the contents of several lines of an internal table to another standard table.

· For detailed information about the ABAP statements described here, refer to the relevant keyword documentation.

[image: image37.wmf]ã

SAP AG 2001

Syntax Example: Filling Line by Line

* fill structure with values:

wa_

flightinfo

-

carrid = ...

.

wa_

flightinfo

-

connid = ...

.

wa_

flightinfo

-

fldate = ...

.

wa_

flightinfo

-

seatsmax = ...

.

wa_

flightinfo

-

seatsocc = ...

.

wa_

flightinfo

-

percentage = ...

.

* insert structure into internal table:

INSERT wa_

flightinfo

INTO TABLE

itab

_

flightinfo

.

* define internal table and

workarea

:

DATA:

itab

_

flightinfo

TYPE sbc400_t_sbc400focc,

wa_

flightinfo

LIKE LINE OF

itab

_

flightinfo

.

itab

_

flightinfo

wa_

flightinfo

· You can insert lines into an internal table by first filling a structure with the required values and then inserting it into the internal table using the INSERT statement.

· For standard tables, this means that the line is appended to the table. For sorted tables and hash tables, the system inserts the line after referring to the key.

[image: image38.wmf]ã

SAP AG 2001

Syntax Example: Reading Contents Using a Loop

LOOP AT

itab

_

flightinfo

INTO wa_

flightinfo

.

WRITE: / wa_

flightinfo

-

carrid,

wa_

flightinfo

-

connid,

wa_

flightinfo

-

fldate,

wa_

flightinfo

-

seatsmax,

wa_

flightinfo

-

seatsocc,

wa_

flightinfo

-

percentage,

'%'.

ENDLOOP.

* define internal table and

workarea

:

DATA:

itab

_

flightinfo

TYPE sbc400_t_sbc400focc,

wa_

flightinfo

LIKE LINE OF

itab

_

flightinfo

.

itab

_

flightinfo

wa_

flightinfo

· You can read and process the contents of an internal table using a LOOP by accessing the structure component within the loop.

· In this example, the WRITE statement is used to create a list from the field contents.

· If you want to change the contents of the internal table, first change the value of the components within the loop and then overwrite the line of the internal table using the MODIFY statement.

[image: image39.wmf]ã

SAP AG 2001

Operations on the Whole Internal Table

Sort

Delete the entire

content of the

internal table

SORT

itab

<conditions>.

REFRESH

itab

.

REFRESH

REFRESH

SORT

SORT

· The following operations affect the whole internal table.

· SORT
You can use this to sort any number of columns in a standard or hashed table in ascending or descending order. You may want to take culture-specific sort rules into account.
· REFRESH
This deletes the entire contents of an internal table. A part of the previously used working memory remains available for future insertions.

· FREE
This deletes the entire contents of the internal table and releases the previously used working memory.

· CLEAR
Unlike all other data objects, this statement has the same effect as the REFRESH statement on internal tables with no header line.

[image: image40.wmf]ã

SAP AG 2001

Syntax Example: Sorting a Standard Table

SORT

itab

_

flightinfo

BY percentage DESCENDING.

* define internal table and

workarea

:

DATA:

itab

_

flightinfo

TYPE sbc400_t_sbc400focc,

wa_

flightinfo

LIKE LINE OF

itab

_

flightinfo

.

itab

_

flightinfo

wa_

flightinfo

BY

BY

DESCENDING

DESCENDING

Name of column(s)

by which to sort

Ascending

or

descending?

· You can sort standard tables by any column, simply by entering the column name after the BY addition to the SORT statement.

· SORT itab [ASCENDING | DESCENDING]
 [BY f1 [ASCENDING | DESCENDING]
 ...
 fn [ASCENDING | DESCENDING]]
 [AS TEXT]
 [STABLE].
Sorting the internal table by the table key or specified field order: Without an addition the system sorts in ascending order.
If you use the AS TEXT addition, the system will, while sorting by character-type fields, take the culture-specific sort rule into account.
Only if you use the STABLE addition will the relative order of data records, which are identical in the sort key, remain intact during sorting.

· In this example, the data records of the internal table are sorted in descending order by the percentage occupancy of flights.

· For more details, refer to the keyword documentation for SORT.

[image: image41.wmf]ã

SAP AG 2001

Internal Tables in Debugging Mode

Variant

4

LOOP AT it_

flightinfo

INTO wa_

flightinfo

.

WRITE: / wa_

flightinfo

-

carrid,

wa_

flightinfo

-

connid,

Fixed point arithmetic

15

30

-

5

6

X

SAP

Watchpoint

ABAP Debugger

a

a

chws

chws

Table

SY

-

SUBRC

0

it_

flightinfo

Double

-

click the

data object

1

2

3

4

5

6

7

8

AA

AA

AA

AA

LH

LH

LH

LH

Internal table

it_

flightinfo

Type

STANDARD

CARRID

0017

0017

0017

0017

0400

0400

0400

0400

CONNID

20000512

20000724

20000828

20001224

20000626

20000715

20001113

20001212

FLDATE

...

...

...

...

...

...

...

...

...

66

120

560

470

240

123

273

280

PERCENTAGE

Table

· You can trace the line contents of an internal table by entering the name in the left column. To see the table display, double-click this entry.

[image: image42.wmf]ã

SAP AG 2001

l

Define elementary and structured data objects

l

Use basic ABAP statements

l

Execute and analyze programs in debugging

mode

You are now able to:

Basic ABAP Language Elements: Unit Summary

ABAP Language Elements Exercises

	[image: image43.png]

	Unit:
Basic ABAP Language Elements

Topic:
Basic ABAP Statements

	[image: image44.png]

	At the conclusion of these exercises, you will be able to:

· Define elementary data objects

· Assign values

· Implement conditional branching

· Perform calculations

	[image: image45.wmf]
	Create an ABAP program for the four basic calculation types. You must be able to enter the values and arithmetic operator on a selection screen. Display the result in a list.

	[image: image46.jpg]

	Program:
ZBC400_##_COMPUTE
Model solution:
SAPBC400TSS_COMPUTE
stands for the two-digit group number.

1-1
Create the executable program ZBC400_##_COMPUTE
without "TOP Include".

1-2
Define the input parameters for two integers (name suggestion: pa_int1, pa_int2) and an arithmetic operator (name suggestion: pa_op). Additionally, define an elementary data object for the result type: packed number with two decimal places (name suggestion: result).

1-3
Execute the calculation in connection with the specified arithmetic operator.

	[image: image47.wmf]
	Use the CASE statement to do this.

1-4
Display the result in a list.

1-5
If the user has specified an invalid arithmetic operator on the selection screen, write an appropriate statement on the list screen..

	[image: image48.wmf]
	Use the IF statement to do this.

1-6
If the user tries to divide by zero, display an appropriate statement on the list screen.

	[image: image49.wmf]
	In a later unit you will learn how you can implement the error handling with a more elegant user dialog.

Exercises

	[image: image50.png]

	Unit:
Basic ABAP Language Elements

Topic:
Working with Structures

	[image: image51.png]

	At the conclusion of these exercises, you will be able to:

· Use the Debugger to trace the data flow and understand the connections between processing blocks.

· Use the MOVE-CORRESPONDING statement to assign values between structures.

	[image: image52.wmf]
	You have to examine a specified ABAP program to ascertain when and how certain data is transported between certain structured data objects.

	[image: image53.jpg]

	Program:
SAPBC400WBS_GETTING_STARTED

2-1
Start the program SAPBC400WBS_GETTING_STARTED. On the selection screen, enter the airline code ‘LH’. In the command field, enter '/h' and then execute the program. You are now in debugging mode.

2-2
Make sure that all of the data objects are initial. Transfer all of the data objects defined in the program to the field view. Find out about the structure and type of the individual components.

2-3
Step through the program, one statement at a time, by choosing Single step (F5). Which fields of the structure wa_scarr does the SELECT statement fill? What is the value of system field sy-subrc after the statement?

2-4
Now observe how fields are copied from the structure wa_scarr to the structure sbc400_carrier. Which field values are copied?

2-5
The statement CALL SCREEN 100 processes screen 100. On the screen, enter appropriate values for the user name, date, and time, and continue with the program. Now observe how fields are copied from the structure sbc400_carrier to the structure wa_scarr.

2-6
Finally, observe how the WRITE statement constructs the list.

	[image: image54.wmf]
	After the first WRITE statement, an extra button appears in the application toolbar, which allows you to display the current contents of the list buffer at any time.

2-7
Restart the program in Debugging mode. Set a breakpoint at the MOVE-CORRESPONDING statement. Before the screen is processed, assign a name to the structure component sbc400_carrier-uname in the Debugger.

	[image: image55.wmf]
	The button used to change the field values at runtime is next to the input/output field.

2-8
Repeat step 2-1. Now set a breakpoint at the CALL SCREEN statement. Additionally, set a field content-dependent watchpoint for the condition that a field value of the structure wa_scarr changes. Choose Continue (F8) to continue the program and check why the debugging of the program is stopped in each case.

Exercises

	[image: image56.png]

	Unit:
Basic ABAP Language Elements

Topic:
Working with Internal Tables

	[image: image57.png]

	At the conclusion of these exercises, you will be able to:

· Search for suitable table kinds in the ABAP Dictionary

· Define internal tables based on a global table kind

· Fill internal tables using array fetch

· Process the content of internal tables using a loop.

	[image: image58.wmf]
	Create an ABAP program that lists additional information on all existing flight departure times.

Get the data from the database table SPFLI.

	[image: image59.jpg]

	Program:
ZBC400_##_ITAB_LOOP
Model solution:
SAPBC400TSS_ITAB_LOOP
stands for the two-digit group number.

3-1
Create the executable program ZBC400_##_ITAB_LOOP
without "TOP-Include".

3-2
Buffer the data from the database table SPFLI in an internal table. Define an internal table with a line type that is compatible with the line structure of SPFLI.
In the ABAP Dictionary, search for all internal table kinds that match this condition.

	[image: image60.wmf]
	
(Use the Where-used list in the ABAP Editor.)

3-3
Define an internal table (name suggestion: it_spfli) based on one of the global table types you have found.

3-4
Define a work area that corresponds to the internal table (name suggestion: wa_spfli).

3-5
Program an array fetch access to all the data records in the database table SPFLI:
SELECT * FROM spfli
 INTO TABLE it_spfli.
3-6
Display the buffered data in a list.

	[image: image61.wmf]
	
Use the LOOP statement to do this.

ABAP Language Elements Solutions

	[image: image62.png]

	Unit:
Basic ABAP Language Elements

Topic:
Basic ABAP Statements

1
Model solution:

REPORT sapbc400tss_compute.

PARAMETERS:
 pa_int1 TYPE i,
 pa_op(1) TYPE c,
 pa_int2 TYPE i.

DATA result TYPE p DECIMALS 2.

IF NOT (pa_op = '+' OR
 pa_op = '-' OR
 pa_op = '*' OR
 pa_op = '/').
 WRITE: 'Invalid operator!'(iop).
ELSEIF pa_op = '/' AND pa_int2 = 0.
 WRITE: 'Division by zero!'(dbz).
ELSE.

 CASE pa_op.
 WHEN '+'.
 result = pa_int1 + pa_int2.
 WHEN '-'.
 result = pa_int1 - pa_int2.
 WHEN '*'.
 result = pa_int1 * pa_int2.
 WHEN '/'.
 result = pa_int1 / pa_int2.
 ENDCASE.
 WRITE: 'Result:'(res), result.

ENDIF.

Solutions

	[image: image63.png]

	Unit:
Basic ABAP Language Elements

Topic:
Working with Structures

2-3
Which components are filled by the SELECT statement C?
mandt, carrid, carrname, currcode, url.

What is the value of the system field sy-subrc after the SELECT statement?
Because there is a data record for the airline LH (Lufthansa) in the database table SCARR, sy-subrc is set to zero.

2-4
Which field values are copied?
mandt, carrid, carrname, currcode.

Solutions

	[image: image64.png]

	Unit:
Basic ABAP Language Elements

Topic:
Working with Internal Tables

3
Model solution:

REPORT sapbc400tss_itab_loop.

DATA: it_spfli TYPE sbc400_t_spfli.
DATA: wa_spfli TYPE spfli.

SELECT * FROM spfli INTO TABLE it_spfli.

* at least one dataset selected
IF sy-subrc = 0.

* move each single dataset from internal table to
* structure WA_SPFLI in order to write data on list
 LOOP AT it_spfli INTO wa_spfli.
 WRITE: / wa_spfli-carrid,
 wa_spfli-connid,
 wa_spfli-cityfrom,
 wa_spfli-cityto,
 wa_spfli-deptime,
 wa_spfli-arrtime.
 ENDLOOP.
ENDIF.

© SAP AG
TAW10
10-51

