

SAP
Records Management

Document Management in Records
Management

Documentation for Developers

March 12, 2004

__
 Seite 2 von 39

Contents

1 Introduction... 3
2 Generic Service Provider Backend... 4

2.1 The Document Concept...4
2.2 Overview of Interface Methods.. 5

2.2.1 IF_SRM_GENERIC_SP ... 5
2.2.2 IF_SRM_DOCUMENT ... 6
2.2.3 IF_SRM_VERSION..7
2.2.4 IF_SRM_VARIANT...8
2.2.5 IF_SRM_GSP_PROPERTIES.. 8
2.2.6 IF_SRM_GSP_TAB_TRANSFER .. 8
2.2.7 IF_SRM_GSP_FILE_TRANSFER.. 9
2.2.8 IF_SRM_GSP_URL_TRANSFER .. 9
2.2.9 IF_SRM_GSP_QUERY.. 10

2.3 Examples... 10
2.3.1 Generating a Document with Version and Variant.................... 10
2.3.2 Opening a Document and Reading its Content 12

3 Using the Generic Document Management API (GDMA)....................... 13
3.1 Overview ... 13
3.2 Exceptions... 15
3.3 Access to Documents.. 17
3.4 Basic Functions ... 17
3.5 Versioning ... 18
3.6 Variants ... 22
3.7 Access Control .. 22

3.7.1 Locking... 22
3.7.2 Access Rights... 23
3.7.3 Resource-Dependent Privileges... 24
3.7.4 Resource-Independent Privileges: ... 25
3.7.5 Access Control Lists (ACL)... 25

3.8 Properties .. 26
3.8.1 Property Access ... 26
3.8.2 Property Definitions .. 27

3.9 Content Access ... 27
3.9.1 Standard Content Access Methods .. 27
3.9.2 Content access via URL... 28
3.9.3 Content Access by File... 30
3.9.4 Components ... 31

3.10 Repository Properties .. 32
3.11 Repository Parameters.. 33
3.12 Query... 33

3.12.1 Query Interface... 34
4 Implementing a GDMA Service Provider .. 36

4.1 Repository Connection .. 36
4.1.1 IF_DM_REP_IMPL...36

4.2 Document Services ... 38
4.2.1 IF_DM_DOCUMENT.. 38

4.3 Cross-Document Functions ... 39
4.3.1 SAP Class .. 39

__
 Seite 3 von 39

1 Introduction
This document describes the architecture of the component Document Management within
Records Management, as well as the options available for changing or enhancing the existing
functions.

To fully understand this document, you require knowledge of ABAP objects, as well as
knowledge of all the technical terms and the architecture of the Records Mana gement
Framework. You can find information about this in the Records Management reference
documentation for developers.

The Document Management architecture enables Records Management elements to be
stored in different repositories. Externally, however, these different repositories are not visible;
the user interface remains the same.

The central part of Document Management is the Generic Document Management API
(referred to in the following as GDMA). This is defined through a set of interfaces, which are
implemented by GDMA Service Providers. A GDMA Service Provider defines where the
elements are stored. It is registered in a separate area of the Records Management
Framework. In Customizing (registry maintenance), you can configure for each type of
Records Management element, which of these GDMA Service Providers (that is, which
storage location) is selected. SAP delivers two GDMEA Service Providers: Service Provider
for storing using the Knowledge Provider and Service Provider for storing using WebDAV.

The GDMA is called by the Generic Service Provider Backend. In turn, the Generic Service
Provider Backend offers an API that is called by Records Management Service Providers. A
Records Management Service Provider is responsible for displaying an element with in
Records Management. All Records Management Service Providers that generate data and
administer in a repository use the Generic Service Provider Backend.

The following diagram gives you an overview of the architecture:

Generic Service Provider Backend (GSP)

Generic Document Management API (GDMA)

calls

implements

GDMA Service Provider for
Storage Using KPro

GDMA Service Provider for
Storage Using WebDAV

GDMA Service Provider for
Storage Using ...

implements implements

Content Server
or Database

WebDAV Server
Storage Location

xyz

Records Management
Service Provider for Files

Records Management
Service Provider for Documents

calls calls

Records Management
Service Provider for ...

calls

Because the architecture is conceived openly, you can implement separate Records
Management Service Providers and GDMA Service Providers.

To implement a Records Management Service Provider that is based on the Generic Service

__
 Seite 4 von 39

Provider Backend, you require some knowledge about the Generic Service Provider Backend.
You can find such documentation in chapter 2. You can find more information about
implementing a Records Management Service Provider in the tutorial Implementing a Service
Provider and also the Records Management reference documentation for developers.

To implement a GDMA Service Provider, you require some knowledge about the GDMA. You
can find this documentation in chapter 4.

You can also use the GDMA independently of the Generic Service Provider Back end and
independently of Records Management. You can find documentation about the GDMA from a
caller’s point of view in chapter 3.

2 Generic Service Provider Backend
You can use the Generic Service Provider Backend (short form Generic Service Provider ,
referred to in the following as GSP) if you want to implement a Records Management Service
Provider that generates and stores its own data. Among the Service Providers that are
delivered by SAP as standard, the SP for files and the SP for documents both use the GSP,
for example. In the following, all elements that are stored using the GSP are referred to as
documents.

2.1 The Document Concept
As a document and the attributes of a document must be versionable, the GSP uses the
following document concept.

There is an entity for the document as a whole, with all of its existing versions, which is
virtually the shell of the document without its content. In the Knowledge Provider (KPro), this
entity is called the Logical Information Object (LOIO). In the Generic SP Backen d, the LOIO is
represented by the interface IF_SRM_DOCUMENT.

In Customizing, you can set attributes in the Content Model for the LOIO, namely LOIO
attributes. These refer to all versions of a document. If a user changes an LOIO attribute
value for a versi on of the document, then this change is also valid for all previous versions of
the document.

There are two entities for the versions of a document: versions and variants. A version is a
content version of a document. In terms of its contents, a variant i s identical to a version,
however it is in a different language or format. The first variant is always the original variant,
that is, it is identical to the version. In the KPro, versions and variants are known as Physical
Information Objects (PHIOs). If y ou want to access the content of a document, you must
access the variants.

In the Generic SP Backend, versions are represented through the interface
IF_SRM_VERSION, and variants through the interface IF_SRM_VARIANT. Versions and
variants are numbered seque ntially. You can always call the current version and the variant
that fits the logon language by using the value 0.

In Customizing, you can also set attributes in the Content Model for PHIOs, namely PHIO
attributes. PHIO attributes are saved specific to e ach version. If a user changes a PHIO
attribute value for a version of the document, then this change is not made in all previous
versions of the document as well.

The following diagram gives you an overview of the connectivity between entities in the
Generic SP Backend:

__
 Seite 5 von 39

CL_SRM_SP_CONNECTION

CL_SRM_GENERIC_SP0 Document VariantVersion

CL_SRM_SP_... CL_SRM_SP_...

IF_SRM_GSP_PROPERTIES
(LOIO-Attributes)

IF_SRM_GSP_PROPERTIES
(PHIO-Attributes)

IF_SRM_DOCUMENT IF_SRM_VERSION IF_SRM_VARIANTIF_SRM_GENERIC_SP

If you want use the Generic SP Backend, you must allow the backend class of your Service
Provider to inherit from the Basis class CL_SRM_GENERIC_SP0. This class already fulfils
the class roles IS_SP_SYSTEM_PARA and IS_SP_CONTENT_CONNECTION_CLASS.

2.2 Overview of Interface Methods
The inheritance hierarchy provides you with the interface methods that are documented
below.

2.2.1 IF_SRM_GENERIC_SP

The inheritance gives you a reference to this interface. The interface IF_SRM_G ENERIC_SP
is responsible for the general connection to the store.

Method Name Explanation

CREATE_DOCUMENT Generates a new document instance for the current
POID (model POID) in the repository, and sets the
instance POID. The import parameters have the
following meanings:

PROPERTY: Table of attributes being set.
DOCUMENT_ID: Value for attribute Document ID. Can
only be set if you have not set the document ID in the
attribute table.

DOC_OBJECT_ID: Technical document ID (GUID,
without document class). Must be set if you check the
flag DO_UPDATE_TASK (see below).

DO_COMMIT: Does a commit have to be performed
after the document has been generated? Default: No.

DO_UPDATE_TASK: Does the document have to be
generated in the update task? Default: No.

GET_DOCUMENT Returns the document that the SP is using. You receive
a reference to IF_SRM_DOCUMENT.

GET_DOC_CLASS Reads for an element type the document class for the
KPro store (corresponds to the value of the connection
parameter DOCUMENT_CLASS, the class of the
LOIOs).

GET_PROPERTY_TYPES Reads the attribute properties of a document class. Use
parameter PROP_LOCATION to specify whether the
properties of the LOIO attributes or PHIO attributes are
to be read. As a value, you assign one of the constants
srmgs_c_prop_loc_doc (for LOIO attributes) or
srmgs_c_prop_loc_ver (for PHIO attributes).

__
 Seite 6 von 39

GET_QUERY Returns reference to the interface for the search
IF_SRM_GSP_QUERY.

IS_AUTHORIZED Checks whether a user has authorization for an activity.
In the case of model POID activities, CREATE,
SEARCH, and for instance POID activities, VIEW,
MODIFY, CLOSE, REOPEN, DELETE. You can find
corresponding constants in the interface
IF_SRM_DOCUMENT.

COPY_PARTIAL Copies exactly one version/variant of the document.
Returns the POID of the new document. Internally, the
method IF_SRM_DOCUMENT~COPY_PARTIAL is
called.

CREATE_SP_POID Creates the SP-specific part of a POID for a document.

This method is not usually used, as this is automatically
done during CREATE_DOCUMENT for example.

2.2.2 IF_SRM_DOCUMENT

You can receive a reference to this interface through
IF_SRM_GENERIC_SP~GET_DOCUMENT(). The interface IF_SRM_DOCUMENT is
responsible for operations on the document as a whole (LOIO).

Method Explanation

APPLY_LOCK Locks the document together with all its versions and
variants for parallel changes out of other sessions.

REMOVE_LOCK Removes the lock.

NEW_VARIANT Generates a new version with a new variant. Using the
parameter CREATE_NEW_LOG_VERSION, you specify
whether the preceding variant is to be overwritten (srmgs
→ false) or is to remain accessible (srmgs → true).

You can only execute this method if the entire document
has been previously locked by calling the method
APPLY_LOCK.

GET_VARIANT Gets a variant of the document. You get a reference to
IF_SRM_VARIANT. This method is generally used for
accessing the current content of a document.

Calling this method has the same effect as calling
GET_VERSION and then calling GET_VARIANT for the
version.

The following rules (in the given order) are used for the
context resolution:

If version and variant were handed over explicitly, then
these are used. If they were not transmitted, then the
default value is –1. This has the effect that the values are
copied from the current POID. If the version and variant
have not been specified in the POID, the current version
and the variant that fits the logon language are used.

CREATE_VERSION Generates a new version of the document. May be better
to call NEW_VARIANT immediately.

GET_VERSION Gets a version of the document. May be better to call
GET_VARIANT immediately.

__
 Seite 7 von 39

GET_VERSIONS_INFO Gets attribute values of all versions of the document.
You transfer a list containing the attributes for which you
want to read the values. Here, the names of the attributes
are the determining factor, the column Value is not
evaluated. If the list is empty, then all attributes of the
versions are returned.

DELETE Deletes the document together with all its versions and
variants.

You can only execute this method if the entire document
was previously locked by calling the method
APPLY_LOCK.

GET_PROPERTY_INTERFACE Returns reference to the interface
IF_SRM_GSP_PROPERTIES for accessing the LOIO
attributes.

IS_MODIFIABLE Checks whether the document can be modified or whether
it is locked.

IS_AUTHORIZED Checks whether the user has authorization for one of the
instance activities VIEW, MODIFY, CLOSE, REOPEN and
DELETE. You can find corresponding constants on the
interface IF_SRM_DOCUMENT.

GET_REPOSITORY_TYPE Reads the repository type. It returns one of the constants
srmgs_c_repository_kpro or srmgs_c_repository_webdav.

Note: If you use a different storage location, you have to
redefine this method.

GET_DOC_ID Reads the document ID.

COPY_PARTIAL Copies a given version and variant. Returns the document
ID of the new document.

SET_UPDATE_MODE Sets the update mode.

Note: if the data is to be stored on a content server,
update mode is not possible.

GET_UPDATE_MODE Reads the update mode.

SET_COMMIT_MODE Sets the commit mode.

GET_COMMIT_MODE Reads the commit mode.

FREEZE_CURRENT_VERSION Closes the current version, meaning that it can no longer
be changed.

2.2.3 IF_SRM_VERSION

You get a reference to this interface through IF_SRM_DOCUMENT~
GET_VERSION(). The interface IF_SRM_VERSION is respon sible for operations in a
version of the document.

Method Name Explanation

CREATE_VARIANT Generates a new variant for this version.

GET_VARIANT Reads a particular variant of this version.

GET_VARIANTS_INFO Returns attribute values for all variants of this version.

GET_COMPONENTS_INFO Returns information about components of the document.

DELETE Deletes the version.

__
 Seite 8 von 39

2.2.4 IF_SRM_VARIANT

You get a reference to this interface through IF_SRM_DOCUMENT~GET_VARIANT() or
IF_SRM_VERSION~GET_VARIANT(). The interfac e IF_SRM_VARIANT is responsible for
operations in a variant of the document.

Method Name Explanation

GET_PROPERTY_INTERFACE Gets the interface IF_SRM_GSP_PROPERTIES for
accessing the PHIO attributes.

GET_COMPONENTS_INFO Returns information about the components of the
document.

DELETE Deletes the variant.

2.2.5 IF_SRM_GSP_PROPERTIES

The interface IF_SRM_GSP_PROPERTIES is responsible for operations in attribute values.

For accessing LOIO attributes, you get the reference to the interface through
IF_SRM_DOCUMENT~GET_PROPERTY_INTERFACE(). For accessing PHIO attributes,
you get the reference to the interface through
IF_SRM_VARIANT~GET_PROPERTY_INTERFACE().

Method Name Explanation

SET_PROPERTIES Sets the attribute values. You transfer a list of the
attribute name / attribute value pairs.

GET_PROPERTIES Reads the attribute values. In the changing parameter,
you transfer a list of attribute names whose values you
want to read, and receive the complete list (names and
values) in return. If you want to read all attribute values,
transfer an empty list. Parameter PROPS_DELETED
gives you information as to whether attributes were
deleted from the list due to missing read authorization.

DELETE_PROPERTIES Deletes the attributes that you transfer.

GET_PROPERTY_TYPES Reads the properties of all attributes.

GET_PROPERTY Reads an attribute.

GET_MAINT_PROPERTIES Reads the maintainable attributes of the document.

CLEAR_CACHE Deletes buffered attribute values.

2.2.6 IF_SRM_GSP_TAB_TRANSFER

You get a reference to this interface through casting the r eference to IF_SRM_VARIANT to
IF_SRM_GSP_TAB_TRANSFER. This interface is responsible for transferring content using
internal (binary or ASCII) tables.

Method Name Explanation

GET_CONTENT Reads the content of the variant.

You can use the AS_ASCII flag to define whether you
want to transfer the content in binary or ASCII format.
The default setting is binary. Depending on which flag
you set, you receive table ASCII_CONTENT or

__
 Seite 9 von 39

BIN_CONTENT.

The table COMPONENTS contains detailed information
of the individual components (see below).

SET_CONTENT Sets the content of the variant.
You can only execute this method if the entire document
was previously locked by calling the method
IF_SRM_DOCUMENT~APPLY_LOCK.

If the content is in binary format, you transfer table
BIN_CONTENT, and if it is in ASCII format, table
ASCII_CONTENT. In both cases you have to transfer
table COMPONENTS. The fields mean the following:

• comp_count: Listing number, not persistent, meaning
that a component can get different values of
comp_count when being read.

• comp_id: File name (must include the correct
extension)

• mimetype: MIME type

• comp_size: Binary size, number of bytes of content

• comp_num: Listing number, stored persistently in the
repository. We recommend that you deal with
comp_count and comp_num in the same way

• binary_flag: SRMGS_TRUE: The content is in binary
format

• first_line: Number of row where the content of the
component starts in the internal table (for the first
component, starts at 1, not 0)

• last_line: Number of row where the content of the
component ends.

2.2.7 IF_SRM_GSP_FILE_TRANSFER

You get a reference to this interface through casting the re ference to IF_SRM_VARIANT to
IF_SRM_GSP_FILE_TRANSFER. This interface is responsible for transferring content using
files.

Method Name Explanation

GET_CONTENT Reads the content of the variant.

SET_CONTENT Sets the content of the variant.

You can only execute this method if the entire document
was previously locked by calling the method
IF_SRM_DOCUMENT~APPLY_LOCK.

2.2.8 IF_SRM_GSP_URL_TRANSFER

You get a reference to this interface through casting the r eference to IF_SRM_VARIANT to
IF_SRM_GSP_URL_TRANSFER. This interface is responsible for transferring content using
a URL.

__
 Seite 10 von 39

Method Name Explanation

GET_URL_FOR_GET Gets the URL for reading the content.

In the import parameter URL_LIFETIME, you transfer the
lifetime of the URL. Two values are available:
SRMGS_LIFETIME_VOLATILE (the URL can only be
assigned to a data provider once) and
SRMGS_LIFETIME_TRANSACTION (the URL is valid
for the entire transaction).

You use the flag WEB_URL_ONLY to specify whether
the URL is to be a data provider URL or an application
server URL (Web URL).

Note: if you want to use the Office integration, we
recommend that you choose the data provider URL,
otherwise problems may occur.

GET_URL_FOR_PUT Gets the URL for writing the content.

CONFIRM_PUT Copies data (call after GET_URL_FOR_PUT).

2.2.9 IF_SRM_GSP_QUERY

You get a reference to this interface through IF_SRM_GENERIC_SP~GET_QUERY(). The
interface IF_SRM_GSP_QUERY is responsible for the search. It stands apart from the other
interfaces, since it does not deal with operations on a document instance.

Method Name Explanation

EXECUTE Performs a search. You transfer the following
parameters:

QUERY_PARAMS: Table con taining the search
requirements entered by the user (attributes, operators,
attribute values). The individual rows of the table contain
search requirements, all of which must be satisfied by the
documents simultaneously, for them to be included in the
results list.

MAX_HITS: Maximum number of hits to be displayed in
the results list.

SEARCH_PROPS: Internal use only.
REQUEST_PROPS: Attributes to be displayed in the
results list.
The following parameters are returned:

RESULTS: Results list.

RESULT_PROPS: Att ributes and attribute values of the
individual results.

IS_PROP_VALUE_UNIQUE Checks whether an attribute/attribute value pair is unique.

2.3 Examples

2.3.1 Generating a Document with Version and Variant

Coding Example

���������	��
�����
���������������� ������� ����� ���
�������������
���������������� �

__
 Seite 11 von 39

���!�"�#�������$�%���
�! ������� ��%���
�$�
 �
����
�������$�
������ ������� ������
�����&�"�"�����'�$ �
��%�������"�������%�
���� ������� ������
���������"�������%�����%�'�& �
('�������"�������%�
���� ������� ������
���������"�������%�� �
��
�����!�"�#�������$�% ������� ����� ���
�������������!�"�#�������$�%)�
��
�����*�'���
�'�$�% ������� ����� ���
�������������*�'���
�'�$�% �
��
�����%�'�&���#�"�$�% ������� ����� ���
�������������
�������%�'�&���%���'�$�������� �
#�"�����"�$���$�%���%�'�& ������� ������
�����#�"�����"�$���$�%�� �
'���#�
�
���#�"�$�%���$�% ������� ������
�����'���#�
�
���#�"�$�%���$�%)�
��+���
���� ������� ����� ��� #�+�����������
���� ,

������,

-�- .�/ ��#�0 (/ ��% / ��� !�"�#�������$�% 1��
�� ��$�
������
��
�����
���������������� 2 ���4365�
�������������
���$�����
�#�������7�
���%������������98 :9,

. �9;�; <�����=���� ��
�����
����������������9365�
���������"�����*�'�����������$�
������
��>��������41�?�@
����"�����$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�"�#�������$�%���
�!
����"�����*�'������ 2
���!�"�#�������$�%���
�!
"�$�������'�#�%���'�� 2 AB>�A

��� . ��16C41�?�@

�������$�
������ 2 ����
�������$�
������ ,

-�- D ��% !�"�#�������$�% 1�� '�$�! !�����#���
���%�
�"�$ ��"�� ;���1��
('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�"�#�������$�%���
�!),
('�������"�������%�
����93E*�'������ 2
���!�"�#�������$�%���
�! ,
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�����#���
���%�
�"�$),
('�������"�������%�
����93E*�'������ 2 AF��� D�. ��1����41���?)A�,
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

-�- @���$�����'�%�� !�"�#�������$�%
. �9;�; <�����=���� ���4365�
�������������
���$�����
�#�������7�#�����'�%�����!�"�#�������$�%
��>��������41�?�@
����"�������%�
���� 2 ��%�������"�������%�
����
!�"���#�"�����
�% 2 ������
�������'������
!�"�������!�'�%�����%�'���0 2 ������
�������'������ ,

-�- @���% ������������$�#�� %�" 1���� D ��<������ .�G <���?��
. �9;�; <�����=���� ���4365�
�������������
���$�����
�#�������7�
���%���!�"�#�������$�%
1�<��������41�?�@
!�"�#�������$�% 2 ��
�����!�"�#�������$�% ,

-�- ��������� ��"�#�0
��
�����!�"�#�������$�%9365�'�������������"�#�048 :9,

-�- D ��% !�"�#�������$�% 1�� '�$�! !�����#���
���%�
�"�$ ��"�� � /
�"
��������� D = ��%�������"�������%�
����),

('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�"�#�������$�%���
�!),
('�������"�������%�
����93E*�'������ 2
���!�"�#�������$�%���
�! ,
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�����#���
���%�
�"�$),
('�������"�������%�
����93E*�'������ 2 AF��� D�. ��1����41���?)A�,
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

-�- @���$�����'�%�� *�'���
�'�$�%
. �9;�; <�����=���� ��
�����!�"�#�������$�%4365�$�� (��*�'���
�'�$�%
��>��������41�?�@
����"�������%�
���� 2 ��%�������"�������%�
����
#�����'�%�����$�� (����"�
���*�������
�"�$ 2 ������
�������'������

��� . ��16C41�?�@
$�� (��*�'���
�'�$�% 2 ��
�����*�'���
�'�$�% ,

__
 Seite 12 von 39

-�- D ��% #�"�$�%���$�%
��
�����%�'�&���#�"�$�% H�2 ��
�����*�'���
�'�$�% ,
. �9;�; <�����=���� ��
�����%�'�&���#�"�$�%4365�����%���#�"�$�%���$�%
��>��������41�?�@
#�"�����"�$���$�%�� 2 #�"�����"�$���$�%���%�'�&
'���#�
�
���#�"�$�%���$�% 2 '���#�
�
���#�"�$�%���$�% ,

-�- ������"�*�� ��"�#�0
��
�����!�"�#�������$�%9365�������"�*�������"�#�098 :4,

-�- ��+�#�����%�
�"�$ / '�$�!���
�$�

. ��� . = #�+�����������
���� 1�?���� ��+���
���� ,

. � D � ��+���
����4365�������"�����%������ ,
I�=���? #�+�����������
�����2�5�!�������
�#�'�%�����"�&�J�
�!),

K ,
I�=���? #�+�����������
�����2�5�
�$�%�����$�'�����������"�� ,

K ,
I�=���? #�+�����������
�����2�5�$�"�%���'���% / "���
�L���! ,

K ,
I�=���? #�+�����������
�����2�5���'���'�����%�������������"��),

K ,
��?�� . � D � ,

��?���������,

2.3.2 Opening a Document and Reading its Content

Coding Example

��������� ��
�����!�"�#�������$�% ������� ����� ���
�������������!�"�#�������$�%)�

��
�����*�'���
�'�$�% ������� ����� ���
�������������*�'���
�'�$�% �
��
������ /
�"�������"�������%�
���� ������� ����� ���
�������������
�����������"�������%�
���� �
��%�������"�������%�
���� ������� ������
���������"�������%�����%�'�& �
('�������"�������%�
���� ������� ������
���������"�������%�� �
����&�"�"�����'�$ ������� ������
�����&�"�"�����'�$ �
��
�����%�'�&���#�"�$�% ������� ����� ���
�������������
�������%�'�&���%���'�$�������� �
��%���#�"�����"�$���$�% ������� ������
�����#�"�����"�$���$�%�� �
'���#�
�
���#�"�$�%���$�% ������� ������
�����'���#�
�
���#�"�$�%���$�%)�
��+���
���� ������� ����� ��� #�+�����������
���� ,

������,

-�- @���% ������������$�#�� %�" 1���� D ��<������ .�G <���?��
. �9;�; <�����=���� ���4365�
�������������
���$�����
�#�������7�
���%���!�"�#�������$�%
1�<��������41�?�@
!�"�#�������$�% 2 ��
�����!�"�#�������$�% ,

-�- @���% ��������
�����! *�'���
�'�$�% "�� % / � !�"�#�������$�%
. �9;�; <�����=���� ��
�����!�"�#�������$�%4365�
���%���*�'���
�'�$�%
��>��������41�?�@
*�������
�"�$���
�! 2 ANM A
*�'���
�'�$�%���
�! 2 ANM A

��� . ��16C41�?�@
������*�'���
�'�$�% 2 ��
�����*�'���
�'�$�%),

-�- @���% '�%�%���
�&���%��
�$�%�������'�#�� "�� % / � *�'���
�'�$�%
��
������ /
�"�������"�������%�
���� 2 ��
�����*�'���
�'�$�%93E5�
���%�������"�������%�����
�$�%�������'�#��98 :4,

-�- @���% #�����%�'�
�$ '�%�%���
�&���%�� *�'�������� "�� % / � *�'���
�'�$�%
('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�"�#�������$�%���
�!),

__
 Seite 13 von 39

��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"�����!�����#���
���%�
�"�$),
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

('�������"�������%�
����93E$�'���� 2
�������������!�"�#�������$�%�2�5�����"���������"�������# / '�$�
���!���&�� ,
��������?�� ('�������"�������%�
���� ��� ��%�������"�������%�
���� ,

. �9;�; <�����=���� ��
������ /
�"�������"�������%�
����4365�
���%�������"�������%�
����
1�<��������91�?�@

����"�������!�������%���! 2 ����&�"�"�����'�$
. =���?�@91�?�@

����"�������%�
���� 2 ��%�������"�������%�
����),

-�- @���% #�"�$�%���$�% 86&��
�$�%�����$�'�� %�'�&�����:
��
�����%�'�&���#�"�$�% H�2 ��
�����*�'���
�'�$�% ,
. �9;�; <�����=���� ��
�����%�'�&���#�"�$�%4365�
���%���#�"�$�%���$�%
1�<��������41�?�@
#�"�����"�$���$�%�� 2 ��%���#�"�����"�$���$�%
'���#�
�
���#�"�$�%���$�% 2 '���#�
�
���#�"�$�%���$�% ,

-�- ��+�#�����%�
�"�$ / '�$�!���
�$�

. ��� . = #�+�����������
���� 1�?���� ��+���
���� ,

. � D � ��+���
����4365�������"�����%������ ,
I�=���? #�+�����������
�����2�5�
�$�%�����$�'�����������"�� ,

K ,
I�=���? #�+�����������
�����2�5�$�"�%���'���% / "���
�L���! ,

K ,
I�=���? #�+�����������
�����2�5���'���'�����%�������������"��),

K ,
��?�� . � D � ,

��?���������,

3 Using the Generic Document Ma nagement API
(GDMA)

3.1 Overview
Documents are implemented in this system as objects that have different services to offer.
One document is represented by the interface “IF_DM_Document“. This interface can be
used to access all other features (interfaces) of this document.
The following UML diagram shows how some of the most important interfaces and objects
work together.

__
 Seite 14 von 39

Documents

createDocument(repository) : IF_IDMA_Document
checkRepositoryProperty(repository) : Boolean
connectDocument(repository, id) : IF_IDMA_Document

Collection

Properties
Access

getId() : String
getChildren() : Iter
copy()
delete()

<<Interface>>

ReadContent

getContent() : IF_DMA_InputStream
hasContent() : Boolean
getContentSize() : Integer
isReadable() : Boolean

<<Interface>>

instantiates

Properties

getProperties(list) : PropertyList
setProperties(propList)
getProperty(name) : String
setProperty(name, value)

<<Interface>>

Access

checkAccess(function) : Boolean
isWriteable() : Boolean

<<Interface>>

Document

Properties
ReadContent
Access

getId() : String
checkRepositoryProperty(name) : Boolean
getInterface(name : String) : Object
copy() : IF_IDMA_Document
delete()

<<Interface>>

instantiates

ApplicationQuery

getDocuments(type, key) : Iter
getObjectTypes() : List
getObjects(type) : List

<<Interface>>

ApplicationLink

addLink(...)
deleteLink(...)
getLinkObjects(...)

<<Interface>>
WriteContent
<<Interface>>

Versions

getVersion()
getVersionList()

<<Interface>>
Variants

getVariant()
getVariantList()

<<Interface>>

The main interface also brings with it three further interfaces which are important for the
usage of a document. These interfaces are avail able as attributes on the main interface.
Further interfaces are available by calling “getInterface“. Before you have a document, it must
be instantiated from a repository. A repository is represented by an object of the class
”CL_DM_Documents“. These obje cts are generic, which means that two different objects of
this class can represent totally different repositories with different properties. This class is the
entry point for the application developer.

The application developer has the following view of the whole document infrastructure:

Repository (CL_DM_Documents)

Repository Objects (IF_DM_Document, ...)

Object Features (IF_DM_*)

Application

__
 Seite 15 von 39

3.2 Exceptions
General information about exceptions:
The methods in the GDMA can trigger different exceptions. There are two main exceptions
classes from which all other exceptions that are triggered sh ould be inherited. The first one is
CX_DM. This class inherits from CX_STATIC_CHECK. It is used for all exceptions that must
be checked at the first point that they occur. The other class is CX_DM_NO_CHECK, which
inherits from CX_NO_CHECK. This class is to be used for all exceptions where an explicit
check would be overkill. For example, in the case of CX_DM_PARAMETER_ERROR, if you
were to check this exception at all possible occurrences, the applications would become
totally cluttered. Furthermore, this ex ception can only occur in faulty programs – and that
should not happen in the finished program. It is also impossible to fix the results of a
programming error in the program (if it was possible, why not fix the error in the first place?).
The GDMA excepti ons have some special properties which must be provided by the method
that triggers the exception. These can also be used in the error description text:

Exception Properties

Name Data Type Semantics
Repository String ID of the repository in which the

problem occurred.
SRC_CLASS String Implementing class (of

SRC_INTERFACE) in which the
problem was encountered.

SRC_INTERFACE String GDMA interface that was called.
SRC_METHOD String Interface method that was called.
SRC_DOCID String ID of the document where the problem

occurred (if any – else empty).
REASON String This property is optional.

Here you can give a reason for the
problem. This may be a HTTP error
code/message, an (English)
description, or anything else that helps
to pinpoint the problem.

ADD_INFO String This property is optional.
Additional info. Here you can state the
ID of a troublesome object, for
example.

REPOSITORY String ID of the repository (DPS-ID) where the
problem occurred (if any – else empty).

This framework provides a set of ex ceptions that can be used for error conditions. For the
person implementing the interfaces, it is also possible to define more detailed exception
classes. These must inherit from the standard exception classes. It is also discouraged to add
new direct subc lasses to one of the two base classes CX_DM and CX_DM_NO_CHECK.
Instead, you should subclass one of the classes that are yet to be used in the interface you
are implementing. In this way, you are not adding descriptions, rather are only describing the
error condition more precisely.

__
 Seite 16 von 39

Here is the list of the standard exceptions:

Standard Exceptions

 Name Semantics Check

CX_DM Base class for checked
exceptions (inherits from
CX_STATIC_CHECK). Please
don’t subclass directly!

X

CX_DM_NO_CHECK Base class for unchecked
exceptions (inherits from
CX_NO_CHECK). Direct
subclassing of this class is
discouraged.

1

CX_DM_ACCESS_DENIED Access to a resource is denied.
A more precise description
must be given, at least in the
text.

X

2 CX_DM_INTERFACE_NOT_AVAILABLE An interface that was requested
is not available. X

3 CX_DM_NOT_FOUND A requested resource was not
found.

X

CX_DM_PARAMETER_ERROR A method was called with an

invalid parameter (parameter
combination).

4
CX_DM_READ An error occurred while reading

information from the resource
store.

X

5
CX_DM_WRITE An error occurred while writing

information to the resource
store.

X

6

CX_DM_READ_WRITE An error occurred while reading
or writing information from or to
the resource store.
ATTN: This class is a super-
class for CX_DM_READ and
CX_DM_WRITE. If it is possible
to decide which error occurred,
the specialized exception
should be raised instead of this
one.

X

7 CX_DM_NOT_AVAILABLE Service is not available X
 CX_DM_UNEXPECTED An unexpected error occurred.

The numbers for the exceptions that are triggered by the methods are added after the
signature in curly parentheses and this color.

__
 Seite 17 von 39

3.3 Access to Documents
Every document is represented by a unique string – its (technical) document ID. The format of
this ID may va ry from content model to content model. For now, there is only one restriction:
the document ID should not be longer than 255 characters.
A repository is represented by an object of the class CL_DM_Documents.

CL_DM_Documents
Attributes

Access : IF_DM_Access Interface for access rights.
With this interface it is possible to check
access rights that are not dependable of a
specific document. E.g. search rights.

Methods
CONSTRUCTOR(docProviderSpace:
CSequence) {3}

Constructor.
The document provider space defines the
repository for the documents.

connectDocument (ID: CSequence) {1, 3, 4} Connect a document using its ID.
getNewDocId () : String {1, 5, 7} Get a new document ID that can be used

to provide for createDocument.
This method does not create a new
document but only reserves a valid ID that
can be used later for a new document.

createDocument (ID : String) :
IF_DM_Document {1, 6, 7}

Create a new document
The ID is optional and must be an ID
obtained from getNewDocId.

getInterface (intf: ref to object) {2} Get the implementation of one special
interface.

getPropertyDefinitions () : PropertyDefTab Get definitions of document properties.
This method allows access to the
definitions of possible document properties
without having a document.

getReposi toryProperty (name: CSequence) :
String

Get a property of the repository (see 3.10)

setRepositoryParameter (name: CSequence,
value: CSequence) {7}

Set a parameter of the repository (see
3.11).

Convenience Methods

Note: Italic parameters are optional.

When you create a new object of this class, you supply a parameter docProviderSpace. This
parameter is somewhat comparable to the element type of the records managem ent
framework. It defines the repository where the documents are to reside. All information that is
further needed for the repository, is stored in the framework registry.

3.4 Basic Functions
There is one main interface that represents a document resource: IF_ DM_Document.
According to the first diagram, three other interfaces are easily reached from this interface:

• IF_DM_Properties - access to the properties of a document
• IF_ReadContent - reading of the document content
• IF_DM_Access - checking the access rights to the document

__
 Seite 18 von 39

IF_DM_Document
Attributes

Properties : IF_DM_Properties Properties Interface
ReadContent : IF_DM_ReadContent ReadContent Interface
Access : IF_DM_Access Access Interface

Methods
getId () : String Get document ID
getInterface (intf: ref to object) {2} Get the implementation of one special

interface
getRepositoryProperty (name: CSequence) :

String
Get a property of the repository (see 3.10)

getRepository () : CL_DM_Documents Get object that represents the repository
copy (newId: String) : IF_DM_Document {1, 6,
7}

Create a copy of the document.
The newId is optional and must be an ID
obtained from getNewDocId.

delete () {1, 6, 7} Delete document
Convenience Methods

isWritable () : Boolean Check whether document is writable

All other interfaces that may be supported can be accessed by calling the method
getInterface. It is also possible to get the repository object by calling getRepository. In this
way, it is possible to transfer a document to a service and for this service to also have access
to the repository. In this way, document handling is made a lot easier.

3.5 Versioning
This API uses a specific model for versioning. One problem is that both non -versioning
repositories and repositories th at support versioning must be supported. I decided to use a
model similar to that of WebDAV, because this model also supports both types of
repositories.

__
 Seite 19 von 39

In this model, one document can be divided into several parts. The first part is the working
version – it is created after a document is created and the content is written the first time. The
interface IF_DM_Document gives you direct access to this version. The interface object is
called the master document. When you access a document you always get the ma ster
document first. You can then use that to access all other parts of the document as they
become available. If you have no versions and no variants, the master document is all you
get.

1.1

Master

Working Version Checked in Versions

IF_DM_Document

Runtime Objects

__
 Seite 20 von 39

If a repository supports versioning, then a version history can b e created by calling the check -
in method.

The checked-in versions are a linear list of versions that cannot be modified. It is possible to
access such versions with the get method.

2.5

Master

Working Version Checked -in Versions

2.42.5 2.3 2.2 2.1

Sub-Doc

IF_DM_Version~get()

IF_DM_Version~checkin()

IF_DM_Document
IF_DM_Document

Runtime Objects

The standard way to modify versions after the first check-in is to check out the latest checked-
in version and then modify this working version. Some repositories may support auto -
checkout, but it is better to not rely on this.
The master document represents either the working version (if there is one and you are the
owner) or the most recently checked -in version of the document. A repository may decide if a
non-owner of the working version sees the working version or only the most recently checked -
in version. This may prevent others from viewing unreleased versions.

1.1

Master

Working Version Checked -in Versions

IF_DM_Document

Runtime Objects

1.1

IF_DM_Version~checkin()

__
 Seite 21 von 39

This interface is provided for versioning:

IF_DM_Version
Methods

get (ID: CSequence) : IF_DM_Document {1,
3, 4}

Get a specific version

getList () : ObjectTab {1, 4} Get list of existing versions
checkout () {1, 6, 7} Check out the current version and set it as

the working version. This can only be done if
there is no working version yet.
This method must be called if the repository
property AutoCheckout is false. If the
property is true, you can still “manually”
check out by calling this method.

checkin () {1, 6, 7} Check in the current working version of the
document. This is then the new “current”
version.

Convenience Methods
getActualVersion () : IF_DM_Document {1,
3, 4}

Get the most recent checked-in version. If
only the working version exists, this method
fails.
The resulting document is read-only.

Note: The (master) document itself represents either the current working version or the most
recent checked-in version.

__
 Seite 22 von 39

3.6 Variants
Variants are a special type of versions. Variants of a document can be a translation (language
variant), or another format version of the same content. The essential difference is that
variants represent the same development state of the document and in essence the same
semantic.
The variant that you acce ss directly in the master document or when you access a specific
version, may depend on your language and further settings. When you create a new version
of a document (or a new document), it is automatically created as an OR (original) variant,
meaning you can have variant support without using this interface. Later you might want to
add other variants using this interface.
The variant interface should be accessed after the resolution of the correct version of a
document.

IF_DM_Variant
Methods

get (ID: CSequence) : IF_IDMA_Document
{1, 3, 4}

Get a specific variant

getList () : ObjectTab {1, 4} Get list of existing variants

create (tag: CSequence, id : CSequence) :
IF_IDMA_Document {1, 6}

Create a new variant.

The tag specifies the type of variant.
The parameter ID does not need to be
evaluated if the repository supports no IDs
(see Property MaxVariantId).

Variant Tags
OR Original variant
LA Language variant
FO Format variant

The first (original) variant must not be
created because it is implicitly created when
a new version (or new document) is created.
A new variant that is created by this method
starts without any content (no components).
Some properties may have been copied or
implicitly created.

3.7 Access Control

3.7.1 Locking

The locking interface mus t be supported by all repositories that support the changing of
documents.

IF_DM_Lock
Methods

lock (lockUser: String) : Boolean {1, 6} Lock the resource.
If the resource is still locked, False is
returned and lockUser is filled with the ID of
the locking principal. If the lockUser is not
known, the method returns the value
“<<unknown>>”.

unlock () {6} Release the lock for the resource

__
 Seite 23 von 39

3.7.2 Access Rights

The access rights for one operation must be checked by the repository when the operation is
requested. However, it is also possible for an application to check in advance if a privilege is
available to the current user.

IF_DM_Access
Methods

checkAccess (privilege: CSequence) :
Boolean

Check if current user has a specific privilege

The access interface is a vailable on CL_DM_Documents and on every document itself. On
CL_DM_Documents, privileges that are not bound to one specific document can be checked.

__
 Seite 24 von 39

3.7.3 Resource -Dependent Privileges

Privileges

Identifier Contains M Semantics
all read, write,

unlock-foreign

read read-properties,
read-content,
read-acl

X Read privilege for resource

write write-properties,
write-content,
write-acl

X Write privilege for resource

read-data read-properties,
read-content

 Read privilege only for properties and
content

write-data write-properties,
write-content

 Write privilege only for properties and
content

create create-content,
create-properties

 Create elements of a resource

delete delete-content,
delete-properties

 Delete elements of a resource

unlock Unlock a resource that was locked by
another principal

read-properties read properties of resource
write-properties delete-

properties,
create-
properties,
change-
properties

 (over)write properties of resource

create-properties The privilege to create (formerly) non-
existing properties. (Non-existing
means that the property had no value
on this resource)

delete-properties Delete existing properties (meaning,
delete the value of a property)

change-properties Change the value of an existing
property, without the need of creating
a new version.

read-content read content of a document
write-content delete-content,

create-content,
change-content

 (over)write content of a document

create-content Create new content
delete-content Delete existing content
change-content Change existing content, without the

need of creating a new version.
read-acl Read access control list of a resource
write-acl Write access control list of a resource
All privileges above must be understood by a valid implementation. Not all implementations
have to support these privileges, but they have to at least react in a defined and useful way to
calls of IF_DM_ACCESS~ checkAccess(privilege), where privilege is one of the above. At
least the mandatory (column “M“) privileges must be supported.
If one privilege is not supported, then the privileges must be handled as always true or always
false. For example, if there is no special privilege for properties, then a check for read-
property will be true if the privilege read or read-content is set. If there is no support for
unlocking of somebody else, unlock will always return false.

__
 Seite 25 von 39

3.7.4 Resource -Independent Privileges:

Resource-Independent Privileges are privileges which are not set for one specific resource
but for all resources in one c ontent space. They are set using the same interface
IF_DM_Access, but the interface must be located at the object representation for the content
space (CL_DM_Documents).
Property Groups are collections of properties which are assigned to the group. The gro ups
are a helpful resource to simplify setting the privileges. There is only one predefined group –
the group “all“ which includes all properties. Property groups are an optional feature that can
be – but does not have to be – supported by an implementatio n of a repository. The support
for property groups is independent of the support for ACLs. The old KPro -SP implementations
(Generic SP 1.0 and Warp 3) were also capable of property groups.

Independent Privileges

Identifier Contains M Semantics
create-document create a new document
create-collection create a new collection
search search documents
read-propgroup-<propgroup> read accessibility for all properties of

one specific property group (all
documents).

write-propgroup-
<propgroup>

 write accessibility for all properties of
one specific property group (all
documents).

3.7.5 Access Control Lists (ACL)

The access interface is rather independent of the implementation of access control. One
example of this is access control lists (ACLs). The privile ges used here are exactly the same
as described above.
Below, a principal can be a user or a group of users that can have privileges.

IF_DM_AccessControl
Methods

getACL () : IF_DM_ACL {1} Get the ACL of a resource
setACL (acl: IF_DM_ACL) {1} Set an ACL for the resource
getSupportedPrivileges () : PrivilegeTab Get all the privileges that are supported by

this resource / repository.

In the PrivilegeTab there are pointers to the interface IF_DM_Privilege:

IF_DM_Privilege
Methods

getIdentifier () : String Get the identifier of the privilege
getDescription (): String Get the description for the privilege. The

description given should be in the login
language of the current user.

getSubPrivileges () : PrivilegeTab Get a table of aggregated privileges which
are contained in this.

__
 Seite 26 von 39

IF_DM_ACL
Methods

getPrincipals () : ObjectTab Principals which are known in the ACL.
getPrivilegeSet (principal: CSequence,

granted: ObjectTab, denied: ObjectTab)
Get granted and denied privileges for one
principal. The set contains only the direct
privileges of the principal – privileges that
are granted using a group membership are
not given.

setPrivilegeSet (principal: CSequence,
granted: ObjectTab, denied: ObjectTab)

Set granted and denied privileges for one
principal. Inherited privileges or privileges by
membership are not affected (but may be
overshadowed).

Note : Underlined parameters are output parameters.

3.8 Properties

3.8.1 Property Access

One of the main interfaces for a document is the one for property access. It is possible t o set
property values and to get property values.

IF_DM_Properties
Methods

getProperties (list: ObjectTab) : PropertyTab
{1, 4, 7}

Get document properties.
If there is no access to one or more
properties, they are not delivered.

setProperties (properties: PropertyTab) {1, 5,
7}

Set document properties

getPropertyDefinitions () : PropertyDefTab
{1, 4, 7}

Get definitions of document properties.
The resulting table contains pointers to the
interface IF_DM_PropertyDef.

deleteProperties (list: PropertyTab) {1, 5} Delete document properties. If properties
have multiple values, then only the given
values are deleted. If the property can only
have one value, that value will be deleted
even if it does not correspond to the given
value (which is ignored).

clearCac he() Clear a property cache, if it exists.
A user can call this method if he knows that
data has been changed by another task or if
he wants to make absolutely sure of getting
the current data.
If no property cache exists, the
implementation of this method may be
empty.

Convenience Methods
getProperty (name: CSequence) : String Get one property
setProperty (name: CSequence, value:

CSequence) {1, 5, 7}
Set one property

This Interface also allows you to access the definition of the properties for documents of this
type.

__
 Seite 27 von 39

3.8.2 Property Definitions

The property definitions interface rests on the model that every property definition supplies
meta properties, which describe the specific property.

IF_DM_PropertyDef
Methods

getDefProperty (name: CSequence) : String Get a property value of a property
Convenience Methods

getIdentifier () : String Get the identifier of a property
getDescription () : String Get description of a property
getDefBoolProperty (name: CSequence) :

Boolean
Get a Boolean property of a property

getDefIntProperty (name: CSequence) :
Integer

Get an integer property of a property

How the property definitions are customized is not subject of this specification.

Property Definitions

Name Data Type Semantics
Name String Name of the attribute
Description String Description text (2)
IsModifiable Boolean Property may be changed (1)
IsModifiableOnce Boolean May be changed only once
IsModifiableViaSelect Boolean Changed only by a selection dialog
IsDeleteable Boolean Property value may be deleted (1)
IsMandatory Boolean Mandatory property
IsUnique Boolean Property can only have one value
IsHidden Boolean Will not be shown (also no columns in

tabs)
IsInheritFromPreVersion Boolean Will be inherited from version to

version
IsLanguageSensitive Boolean Property value is language-dependent
IsQueryable Boolean Property query is possible (1)
ListPosition Integer Position in a list view
ValueCheck-Table String DDIC table for value check
ValueCheck-Field String DDIC field for value check
Extensibility:
Everybody may define additional attributes. However, the names must then start with
“<module>_“ as a prefix. The prefix must have at least 3 uppercase letters.

Remarks:
(1): May be modified by access rights.

Additionally, it may be possible that the values of properties are not given by
getProperties, if no read access exists for them (this is not related to IsHidden).

(2): May be language-dependent.

3.9 Content Access

3.9.1 Standard Content Access Methods

The standard method for content access is access through r eading/writing the content as
byte-stream through the memory of the application server. This method is more convenient.
Every repository must support this type of content access. If the content is only readable, then
only IF_DM_ReadContent must be supporte d. If the content is also writable, then
IF_DM_WriteContent must be supported as well.

__
 Seite 28 von 39

IF_DM_ReadContent
Methods

read (offset: Numeric, length: Numeric) :
XString {1, 4}

Get document content

GetSize () : LongInt (N16) {1, 4} Get size of content
getMime Type () : String {1, 4} Get MIME type content
getEncoding () : ABAP_ENCODING {1, 4} Get encoding of content

Convenience Methods
hasContent () : Boolean Is there content?
isReadable () : Boolean Is the content (for current user) readable?

Note: This interface must be supported by any content repository.

IF_DM_WriteContent

Methods
setMimeType (mimeType: CSequence) Set the MIME type of the document. If the

MIME type could not be set, the error is
ignored – the error must be reported during
calls of write or finishWrite.

setEncoding (encoding: ABAP_ENCODING) Set the encoding of the document. If the
encoding could not be set, the error is
ignored – the error must be reported during
calls of write or finishWrite.

write (content: XString, position: LongInt, size:
integer) {1, 5}

Set document content. This method can be
called as often as needed, but should be
called at least once even for empty content.

finishWrite () {5} Finish the write. setMimeType, setEncoding
and write must be called before calling this.

Convenience Methods
IsWritable () : Boolean Is the content (for current user) writable?

Note: This interface must be supported by any writable content repository.

3.9.2 Content access via URL

Sometimes the access by URL is more convenient. Particularly when visualization
components are available which can handle the URLs. However, this type of interface
includes a number of insecurities, because the URLs can be generated by different sources
and not every consumer may be able to handle all URLs. Neverth eless, it is also one way to
avoid streaming the whole content through the application server.

__
 Seite 29 von 39

IF_DM_ReadURL
Methods

getReadURL (type: UrlKind, location:
LocationInfo) : String {1, 4}

Get URL for content.
The location (of the destination for the
content) can be used by the implementation
to optimize the routing of the data, because
front-end and back-end of the system may
be in remote places.

getSize () : Integer {1, 4} Get size of content
getMimeType () : String {1, 4} Get MIME type content
getEncoding () : ABAP_ENCODING {1, 4} Get encoding of content

Convenience Methods
hasContent () : Boolean Is there content?
isReadable () : Boolean Is the content (for current user) readable?

Note: This interface does not necessarily need to be supported. There may also be a
standard implementation that maps IF_DM_ReadContent to this one. This may result in
poor performance, because the data must be routed through the application server
(location will be ignored).

IF_DM_WriteURL
Methods

setMimeType (mimeType: CSequence) Set the MIME type of the document
setEncoding (encoding: ABAP_ENCODING) Set the encoding of the document
getWriteURL (type: UrlKind, location:

LocationInfo) : String {1}
Get URL for writing operation.
Here we are also able to give a location (in
this case, location of the content source) that
may be helpful for the routing of the data
(see IF_DM_ReadURL->getReadURL).

finishWrite (){5} Finish the write. setMimeType, setEncoding
and getWriteURL (+ writing to it) must be
called before calling this.

Convenience Methods
isWritable () : Boolean Is the content (for current user) writable?

__
 Seite 30 von 39

3.9.3 Content Access by File

Like URL access, the access by file may have advantages. Moreover, it could enable you to
minimize the data transfer.

IF_DM_ReadFile
Methods

download (file: String, location: LocationInfo)
{1,6}

Create file with the content of the document.
The location can be used by the
implementation to optimize the routing of the
data.

getSize () : Integer {1, 4} Get size of content
getMimeType () : String {1, 4} Get MIME type content
getEncoding () : ABAP_ENCODING {1, 4} Get encoding of content

Convenience Methods
hasContent () : Boolean Is there content?
isReadable () : Boolean Is the content (for current user) readable?

Note: This interface does not necessarily need to be supported. There may also be a
standard implementation that maps IF_DM_ReadContent to this one. This may result in
poor performance, because the data must be routed through the application server
(location will be ignored).

IF_DM_WriteFile
Methods

setMimeType (mimeType: CSequence) Set the MIME type of the document
setEncoding (encoding: ABAP_ENCODING) Set the encoding of the document
upload (file: String, location: LocationInfo) {1,

3, 6}
Set document content through a file content

finishWrite () {5} Finish the write. setMimeType, setEncoding
and upload must be called before calling
this.

Convenience Methods
isWritable () : Boolean Is the content (for current user) writable?

__
 Seite 31 von 39

3.9.4 Components

Some repositories may also support compo nents. Components are also treated as versions.
You must only access the component interface after the resolution of version and variant.

IF_DM_Component
Methods

get (ID: CSequence) : IF_DM_Document {1,
3, 4}

Get a specific component

getList () : ObjectTab {1, 4} Get list of existing components
create (id: CSequence, compNum: Integer) :
IF_DM_Document {1, 6}

Create new component.
The parameter ID does not need to be
evaluated if the repository does not support
IDs (see Property MaxComponentId).
The first (main) component is created when
you first save content on a
document(/version). You only need to create
additional components with this method.
The parameter compNum is optional and
does not need to be evaluated if the
repository does not support it (see Property
CompNumSupported).

getCompNum (ID: CSequence) : Integer Get the component number of a component if
the repository supports this feature. If not,
then return -1.

Note: Italic parameters are optional.

__
 Seite 32 von 39

3.10 Repository Properties
Repository properties are read-only properties of a repository which can be accessed through
getRepositoryProperty on the interface IF_DM_Document, or on an object of the class
CL_DM_Documents.
With these properties you are able to check special features of the repository.

Repository Properties

Name Data Type Semantics
ClientDependant Boolean Repository is client-dependent
DoesCommit Boolean Changes are committed immediately –

no rollback possible. The value of this
property may change if the repository
supports the repository parameter
DoCommit (see 3.11).

ACL Boolean Supports ACLs (and also the ACL
interface)

Create Boolean Creation of documents
PropGroups Boolean Supports property groups
LocalCache Boolean Supports local (optimized) caching of

documents.
AutoCheckout Boolean When a document is written to, then

an automatic checkout is performed.
ShowWorkingVersion Boolean When this flag is set, a read on the

master document always retrieves the
current working version of the
document when there is one available.
If no working version is available, the
current version is always taken.
If it is not set, a read retrieves the
current version of the document
unless the current user is the user who
performed the checkout or created the
document.

MaxVariantId Integer Maximum size of (user-defined)
variant IDs. If no user-defined variant
ID is possible, the value is 0.

MaxComponentId Integer Maximum size of (user-defined)
component IDs. If no user-defined
component ID is possible, the value is
0.

InUpdateTask Boolean Writes data in update task to the
repository.

IsTransportable Boolean Documents in this repository are
transportable.

SubSpaceId String The ID of the document subspace.
See repository parameter
SubSpaceId. Not all repositories
support subspaces. If not, they always
return an empty string here.

CompNumSupported Boolean The repository supports component
numbers, if this property is True.

__
 Seite 33 von 39

3.11 Repository Parameters
Repository parameters are values that can be set, which influence the operation of the
repository. Repository parameters can be changed by calling setRepositoryParameter on an
object of the class CL_DM_Documents.

Below is a list of standard repository parameters. A repository does not need to support any
parameter. There may also be repository-specific parameters. For such special parameters,
the naming convention of property definitions also applies (<module>_...).

If a parameter is not supported, the exception CX_DM_NOT_AVAILABLE must be triggered.

Repository Parameters

Name Data Type Semantics
Login String A login name/ID that may be required

for logins on the repository
Password String A password that may be required in

addition to Login.
DoCommit Boolean Change the commit behavior. If this

parameter is changed, the value of the
repository property DoesCommit
changes accordingly.

InUpdateTask Boolean Change repository property
“InUpdateTask” – if possible.

SubSpaceId String It is possible to divide one document
provider space into subspaces, and to
provide along with this parameter the
ID of a subspace that is to be used.

3.12 Query
For the execution of queries, two different interfaces are possible, because different
repositories may have different capabilities. In the R/3 area, the selection options are ve ry
popular. With these it is possible to handle many types of queries, however there are some
queries that cannot be modeled with this technique. This is the reason for the second
interface – the operation query. This allows you to use a Boolean algebra type of query
description that is much more general than selection options. A repository may choose to
implement one of these interfaces or both. It is also possible to generically implement the
selection options interface based on the operation query interface. This implementation can
be added to any service provider that implements the more general interface on its own.

__
 Seite 34 von 39

3.12.1 Query Interface

IF_DM_Query
Methods

execute (desc : QueryDescTab, maxHits:
Integer, searchProps: PropertyTab,
resultProps: ObjectTab, result:
ResultList, props: ObjectPropTab)

Execute a query that is defined by the given
query description table.
If the query description is invalid,
CX_DM_PARAMETER_ERROR must be raised.
searchProps can consist of the following
(depending on which properties are supported
by the repository):

search Properties
LANGUAGE Language in which

to search
ONLY_ACTUAL Search only in

actual versions
NEAR_BY Maximum word

distance of
multiple phrases

RMS_ID RMS-ID (Records
Management)

SPS_ID SPS-ID (Records
Management)

Convenience Methods

Note : Underlined parameters are output parameters.

__
 Seite 35 von 39

Structure QueryDescTab

Name Data Type Semantics
GroupNo Integer The number of a group of atomic operations

(one line in the table is one atomic
operation). The entries in this table must be
sorted by this group number. The union of
all results of any atomic operation in one
group will be created.
The results of different groups will be
intersected.

PropertyId STRING Name of the property or left empty for full-
text search.

Operator STRING Possible values:

Option Values:
EQ Property equal to Value
NE Property not equal to

Value
LT Property less than Value
GT Property greater than

Value
LE Property less than or

equal to Value
GE Property greater than or

equal to Value
BT Property between Value

and HighValue
NB Property not between

Value and HighValue
CP Contains Pattern
NP No Pattern

Value STRING Value for comparisons. It serves as low
value when option is BT

HighValue STRING High Value when option is BT, otherwise
ignored.

Structure QueryResultList

Name Data Type Semantics
ResultNum Integer Unique result number
DocId String The ID of the document found.
Version String The version ID of the document

(optional)
Description String Descriptive Text for the document,

which can be displayed in a results list
(optional).
The repository can decide which
property may be used for this
information.

__
 Seite 36 von 39

Structure ObjectPropTab

Name Data Type Semantics
ResultNum Integer The ID of the result in the

QueryResultList.
PropName String Name of the property
PropValue String Value of the property

Examples:

 1|PROP1|EQ|C* selects all documents with PROP1 = “C*”

 1|PROP1|CP|C* selects all documents with PROP1 matching C*

 1|PROP1|EQ|JOHN selects all docume nts with PROP1 = “JOHN”
 1|PROP1|EQ|ANNA OR PROP1 = “ANNA”

 1|PROP1|EQ|JOHN selects all documents with PROP1 = “JOHN”
 2|PROP1|EQ|ANNA AND PROP1 = “ANNA” (if PROP1 has multiple values)

 1|PROP1|EQ|JOHN selects all documents with PROP1 = “ JOHN”
 1|PROP2|EQ|ANNA OR PROP2 = “ANNA”

 1|PROP1|EQ|JOHN selects all documents with PROP1 = “JOHN”
 2|PROP2|EQ|ANNA AND PROP2 = “ANNA”

 1|PROP1|EQ|JOHN selects all documents with PROP1 has one value “BERT”
 1|PROP2|EQ|ANNA AND either has PROP1 another value “JOHN”
 2|PROP1|EQ|BERT OR PROP2 = “ANNA”

4 Implementing a GDMA Service Provider
To implement a GDMA Service Provider, proceed as described below.

4.1 Repository Connection
Declare a class that inherits from the basis cla ss CL_DM_REP_IMPL. Implement the
repository connection in this class.

The class CL_DM_REP_IMPL has the interface IF_DM_REP_IMPL.

4.1.1 IF_DM_REP_IMPL

Some of the interface methods have been implemented already, and some you still have to
implement. The following list gives you an overview:

Method Name Explanation Implementation

GET_NEW_DOC_ID Returning DOC_ID
You generate a new document ID for a
new document.

To be
implemented

CREATE_DOCUMENT Importing IMP_DOC_ID (optional),
Returning DOC_ID.

You generate a new document.

To be
implemented

__
 Seite 37 von 39

The caller of the GDMA has the option of
handing over a DOC_ID. If the caller does
not hand over a DOC_ID, you have to
generate one. You do this by calling
IF_DM_REP_IMPL~GET_NEW_DOC_ID(
), see above.

The method is called within the method
CREATE_DOCUMENT() of class
CL_DM_DOCUMENTS.

GET_PROPERTY_DEFINITIONS Returning PROPERTY_DEFS.

You return the properties of the document
attributes.

The method is called within the method
GET_PROPERTY_DEFINITIONS() of
class CL_DM_DOCUMENTS.

To be
implemented

GET_REPOSITORY_PROPERTY Importing NAME, Returning VALUE.

You receive the name of a repository
attribute and return the value of the
required repository attribute.

Repository attributes are attributes that
return information about the repository.
You can find a standard for repository
attributes in the list on page 32. We
recommend that you use these attributes.

The method is called within the method
GET_REPOSITORY_PROPERTY() of
class CL_DM_DOCUMENTS.

To be
implemented

SET_REPOSITORY_PARAMETER Importing NAME, VALUE.

You receive a name-value pair of a
repository parameter and usually set this
as class attribute for your class.

Repository parameters are attributes that
can change the behavior of the repository.
You can find a standard for repository
attributes in the list on page 33.

The method is called within the method
SET_REPOSITORY_PARAMETER() of
class CL_DM_DOCUMENTS.

To be
implemented

CONNECT Among other tasks, sets class attribute
MY_REPOSITORY. This class attribute
includes an object of the class
CL_DM_DOCUMENTS that represents
the repository.

Implemented
already. Cannot
be redefined.

GET_REPOSITORY The repository is read from the class
attribute MY_REPOSITORY.

Implemented
already. Cannot
be redefined.

In addition, the class CL_DM_REP_IMPL has the following methods:

Method Name Explanation Implementation

CHECK_CONNECT You check whether the specified
repository exists. For more details, read
the comment in the method.

Must be
redefined.

GET_CONNECTION_PARAMETER Returns connection parameter. Implemented
already. Cannot

__
 Seite 38 von 39

already. Cannot
be redefined.

4.2 Document Services
Declare a class that inherits from CL_DM_DOCUMENT. In this newly declared class, you
implement the services which are to be made available for document processing.

The class CL_DM_DOCUMENT has the interface IF_DM_DOCUMENT.

4.2.1 IF_DM_DOCUMENT

This interface represents a document. Some of the interface methods have already been
implemented, some of them still have to be implemented. The followi ng list gives you an
overview:

Method Name Explanation Implementation

COPY Importing: NEW_ID (optional), Returning NEW_DOC

You receive the new ID, which was generated using
IF_DM_REP_IMPL~GET_NEW_DOC_ID. You copy the
current document and return this as an interface
reference to IF_DM_DOCUMENT.

To be implemented

DELETE You delete the current document. To be implemented

IS_WRITABLE Returns an indicator for whether the current document is
allowed to be changed.

Internally, the method CHECK_ACCESS is called on the
interface IF_DM_ACCESS. That is where you perform
the actual implementation.

Implemented
already. Cannot be
redefined.

GET_INTERFACE Returns a reference to the interface which the caller
used to type the parameter.

Implemented
already. Cannot be
redefined.

GET_REPOSITORY
_PROPERTY

Returns the value for a repository attribute.

Internally, the method
GET_REPOSITORY_PROPERTY is called on the
interface IF_DM_REP_IMPL. That is where you perform
the actual implementation.

Implemented
already. Cannot be
redefined.

GET_ID Returns the ID of the current document. Implemented
already. Cannot be
redefined.

GET_REPOSITORY Returns an object of class CL_DM_DOCUMENTS. This
object represents the repository.

Implemented
already. Cannot be
redefined.

CHECK_REPOSITO
RY_PROPERTY

Checks a repository attribute. Implemented
already. Cannot be
redefined.

You also implement those GDMA interfaces that you require. You can find the documentation
about GDMA interfaces in the section Using the Generic Document Ma nagement API
(GDMA).

If you only require simple document services, you can inherit from the class
CL_DM_SIMPLE_DOCUMENT. This class already contains the most important interfaces.

If you want to study an example implementation, you can look at the class
CL_DM_TEST_DOCUMENT in the package SGDMA_TEST. This class implements the
minimum functions.

__
 Seite 39 von 39

Note for the connection to GSP:

If you are implementing a GDMA Service Provider that is to be called by the GSP, you must
implement the following GDMA interfaces, since the GSP requires and calls these:

• IF_DM_DOCUMENT

• IF_DM_VARIANT (optional)

• IF_DM_VERSION

• IF_DM_LOCK

• IF_DM_ACCESS

• IF_DM_READ_CONTENT

• IF_DM_WRITE_CONTENT

• IF_DM_READ_URL

• IF_DM_WRITE_URL

• IF_DM_READ_FILE

• IF_DM_WRITE_FILE

• IF_DM_PROPERTIES

• IF_DM_COMPONENT

4.3 Cross -Document Functions
Declare a class that inherits from CL_DM_UNBOUND. This class is responsible for searching
for documents, as well as for the authorization check, which does not refer to a particular
document, rather to the repository.

The class CL_DM_UNBOUND has the following methods, which you must implement:

Method Name Explanation Implementation

CONNECT Importing REP_IMPL.
The method is called when the object is generated. You
receive the interface reference to IF_DM_REP_IMPL.
You can store this in a class attribute.

To be implemented

You must implement the interface IF_DM_QUERY and the interface IF_DM_ACCESS.

We recommend that you implement the interface IF_DM_ACCESS twice, to conduct the
following two authorization checks:

• Checking t he access to a document. You can find a list of the activities that can be
checked on page 24.

• Checking the access to the repository (for example, activities Find and Create). You can
find a list of the activities that can be checked on page 25.

4.3.1 SAP Class

If you do not require an authorization check for the search, you can use the class
CL_DM_FULL_REP_ACCESS. This is fully implemented, and can be registered in the
registry directly.

