
BC ABAP Workbench Tutorial

H
E

L
P

.B
C

D
W

B
T

U
T

Re lease 4 .6C

BC ABAP Workbench Tutorial SAP AG

2 April 2001

Copyright

© Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or for any purpose
without the express permission of SAP AG. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of
Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®,
AS/400®, OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and Informix® Dynamic Server
TM

 are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide
Web Consortium,
Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for
technology invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries
all over the world. All other products mentioned are trademarks or registered trademarks of their
respective companies.

 SAP AG BC ABAP Workbench Tutorial

April 2001 3

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

Tip

BC ABAP Workbench Tutorial SAP AG

4 April 2001

Contents

BC ABAP Workbench Tutorial.. 6
BC ABAP Workbench Tutorial ..7
Note to the Reader ...8
About the Tutorial ..9
Prerequisites...11
Terminology..12
A Word About Interfaces ...13
Choosing Names for SAP Objects..14
Learning More...15
Lesson 1: Understanding the Workbench Tools ..16
Introduction to Lesson 1 ...17
Exercise 1: Opening the Workbench..18
Exercise 2: Learning the Workbench Tools ..19
Exercise 3: Navigating an Object List ..21
Exercise 4: Creating a Program..22
Exercise 5: Setting a Marker ...24
Exercise 6: Creating a Transaction ..25
Review of Lesson 1 ..26
Lesson 2: Working with Tables...27
Introduction to Lesson 2 ...28
Exercise 1: Creating a Table Object ...30
Exercise 2: Specifying Table Fields ...31
Exercise 3: Defining Data Elements and Domains ...33
Exercise 4: Reusing Domains...35
Exercise 5: Defining a Value List ..37
Exercise 6: Specifying Technical Settings ..38
Exercise 7: Activating a Table...39
Review of Lesson 2 ..40
Lesson 3: Designing Screens ...41
Introduction to Lesson 3 ...42
Exercise 1: Creating a Screen...43
Exercise 2: Placing an Element on a Screen...44
Exercise 3: Refining a Screen...46
Exercise 4: Checking the Screen Layout...48
Exercise 5: Setting the OK Field...49
Review of Lesson 3 ..50
Lesson 4: Specifying a GUI Status...51
Introduction to Lesson 4 ...52
Exercise 1: Create a GUI Status..53
Exercise 2: Add Menus to Your Interface ..54
Exercise 3: Define Function Keys...55

 SAP AG BC ABAP Workbench Tutorial

April 2001 5

Exercise 4: Specify PushButtons ...56
Exercise 5: Finish Up ...57
Review of Lesson 4 ..58
Lesson 5: Coding the Transaction ...59
Introduction to Lesson 5 ...60
Exercise 1: Writing Flow Logic ...61
Exercise 2: Creating Modules ...62
Exercise 3: Specifying Global Variables..63
Exercise 4: Coding the Modules...64
Exercise 5: Creating a Message Class...66
Exercise 6: Testing Your Transaction..67
Exercise 7: Running the Debugger...68
Review of Lesson 5 ..69
Lesson 6: Working in a Team..70
Introduction to Lesson 6 ...71
Exercise 1: Creating a Development Class ...73
Exercise 2: Examining Change Request List ..74
Exercise 3: Adding Another Programmer..75
Exercise 4: Creating a Program..76
Exercise 5: Releasing the Change Request ..77
Review of Lesson 6 ..79

BC ABAP Workbench Tutorial SAP AG

6 April 2001

BC ABAP Workbench Tutorial

 SAP AG BC ABAP Workbench Tutorial

April 2001 7

BC ABAP Workbench Tutorial

Note to the Reader [Page 8]

Lesson 1: Understanding the Workbench Tools [Page 16]

Lesson 2: Working with Tables [Page 27]

Lesson 3: Designing Screens [Page 41]

Lesson 4: Specifying a GUI Status [Page 51]

Lesson 5: Coding the Transaction [Page 59]

Lesson 6: Working in a Team [Page 70]

BC ABAP Workbench Tutorial SAP AG

8 April 2001

Note to the Reader
This note to the reader contains information you should know before going on to read the ABAP
Workbench Tutorial. The note includes the following topics:

About the Tutorial [Page 9]

Prerequisites [Page 11]

Terminology [Page 12]

A Word About Interfaces [Page 13]

Choosing Names for SAP Objects [Page 14]

Learning More [Page 15]

 SAP AG BC ABAP Workbench Tutorial

April 2001 9

About the Tutorial
This tutorial introduces you to the tools in the ABAP Development Workbench. The Workbench
contains the tools you use to create an ABAP application.

The tutorial contains six lessons. These lessons are intended to introduce you to the concepts of
creating an application with the Development Workbench. After you complete the lessons, you
should have a good understanding of the role each tool takes in the application development
process.

ABAP Workbench Tutorial does not teach you how to program in ABAP. Learning More [Page
15] provides information about what you should read when you are done with this tutorial.

Where to Start
The tutorial lessons are designed to quickly acquaint you with the process of creating an
application with the Development Workbench. You are introduced to each of the Workbench
tools through the implementation of a single ABAP transaction. The transaction is a simplified
flight-reservation application. Because each lesson builds on information learned in the previous
lessons, you should work through the lessons in order. The following lessons are included:

� Lesson 1: Understanding the Workbench Tools [Page 16]

introduces you to the tools found in the Workbench. You learn how to open and close the
Workbench. The chapter teaches you how to use the Object Browser tool. You learn how
to display both public and private object lists. Finally, you learn how to create both a
program object and a transaction.

� Lesson 2: Working with Tables [Page 27]

introduces you to the SAP Data Dictionary tool. This lesson teaches you how to create a
table object. You learn what components make up a table. This lesson also teaches you
how to use the Workbench tools to release objects to everyone in your R/3 System.

� Lesson 3: Designing Screens [Page 41]

teaches you how to use the Screen Painter tool. You use the tool to lay out screen
elements. You also learn how to refine a simple screen so that it has the look and feel of
a commercial interface.

� Lesson 4: Specifying a GUI Status [Page 51]

uses the Menu Painter tool to define a GUI status. You use the Menu Painter to define
the tool bars in an application window. You learn how to specify menus, window titles,
and function keys.

� Lesson 5: Coding the Transaction [Page 59]

teaches you how to complete a transaction by writing code with the ABAP Editor tool.
You learn how to create global variables and subprograms. You also use the Editor tool
to add messages to an existing program. You learn how to run your transaction. Finally,
you learn how to debug a program with the debugger.

� Lesson 6: Working in a Team [Page 70]

teaches you how to use the Workbench Organizer tool. You learn how to set access to
objects during development and how to release program code to everyone in your R/3
system.

BC ABAP Workbench Tutorial SAP AG

10 April 2001

You can work through the lessons at your own pace. Each lesson begins with an overview of
what you will learn. Lessons are divided into exercises. You are given an opportunity to check
your work after each exercise. At the end of every lesson, you are provided with a review of what
you learned and a an overview of the next lesson.

When you complete these lessons, you should continue reading in the ABAP Workbench Tools
[Ext.] to learn about the tools in detail.

 SAP AG BC ABAP Workbench Tutorial

April 2001 11

Prerequisites
This tutorial is written for readers who are familiar with the R/3 System. You should have read
and understood the information contained in the Getting Started documentation. It helps if you
have some knowledge about using other areas of the R/3 system. Finally, you should have some
experience with ABAP, though in-depth knowledge is not required.

Before you can use the tutorial, you must:

� Be able to log on to the R/3 system

If you are reading this tutorial online, you probably already have an SAP logon.
Otherwise, ask your R/3 system administrator for a user ID, a client, and a password.
Getting Started documentation supplies more information about requirements for an SAP
logon.

� Have Release 3.0 of the R/3 System

If you are unsure about what version you are using, ask your system administrator.

� Be working on a UNIX, Windows 95, or Windows NT platform

SAP’s graphical full screen editor runs only on UNIX, Windows 95, or Windows NT
platforms. With other platforms, you must use an alphanumeric full screen editor.

� Have access to the SDW6 development class

If you are not sure whether this development class exists in your system, ask your
system administrator for confirmation.

BC ABAP Workbench Tutorial SAP AG

12 April 2001

Terminology
Getting Started with the ABAP Workbench tutorial assumes you are already familiar with how to
use the R/3 interface. If you are not, you should take the “Tour through the R/3 Window” in the
Getting Started documentation. This tutorial uses the following terminology:

Term Description

dialog box (or dialog) A window that the system displays on top of the application
window. Dialogs appear when the R/3

System needs more information from you or when it wants to give
you a message.

enter To type information in a field provided in a screen or in a dialog.

screen The arrangement of menus, buttons, and fields that appear in a
window. A single ABAP application might have several screens.
The title of a screen appears in the title bar.

choose A method for selecting options in the system using a mouse or
function key. How you choose an item in the R/3 system will
depend on the look and feel of your windowing system and the
type of mouse you have. If you are unfamiliar with how to choose
items in your environment, you should review the introductory
material that accompanied your system.

select An action that makes a radio button, list item, or text field active.

window A graphical object on your display that contains an application. In
the case of the lessons, the window contains the ABAP
application.

 SAP AG BC ABAP Workbench Tutorial

April 2001 13

A Word About Interfaces
The Windows NT 3.5 interface version of the Development Workbench was used to produce the
screen captures you see in this tutorial. The pictures of screens and buttons in this tutorial is thus
the same as as they would in Windows NT 3.5 or Windows 3.1. If you are using another
interface, for example Motif or Windows 95, your screens will appear slightly different.
Regardless of your system’s look and feel, the procedures and examples in this tutorial work in
the same manner.

BC ABAP Workbench Tutorial SAP AG

14 April 2001

Choosing Names for SAP Objects
Throughout this tutorial you are asked to name new ABAP objects. It is important that you
understand and follow two R/3 naming conventions. First, all names for the objects you define
should begin with Y or Z. This convention ensures that the names you select are different from
the R/3 system versions.

Secondly, the names you select must be unique. The system will tell you if a name you choose
already exists. Many development objects are system-wide and this convention provides an extra
safeguard against loss or damage to data.

Finally, for the purposes of this tutorial, it is a good idea to use your initials as the distinguishing
feature of your object names. Using your initials prevents any conflicts between you and other
users who may also be working through the tutorial.

For example, if Ann Jones is asked to name an object using the form Y<xx>ID, she would name
her object: YAJID. This would distinguish Ann´s object from Bob Smith´s object: YBSID.

Failure to follow the naming conventions can result in loss of data. Be sure you
understand the conventions before continuing.

 SAP AG BC ABAP Workbench Tutorial

April 2001 15

Learning More
To learn more about ABAP programming and the ABAP Development Workbench, refer to the
following:

� ABAP User's Guide [Ext.]. This documentation provides a detailed explanation about the
parts of an ABAP program. Read this, to learn more about

– ABAP basics

– Programming reports

– Programming transactions

� Advanced techniques.

� ABAP Workbench Tools [Ext.]. This documentation discusses each Workbench Tool and
provides detailed information about the code produced by the various tools.

� ABAP Dictionary [Ext.]. This documentation explains ABAP data. Basic objects and
aggregated objects are discussed. Information is provided on maintaining dictionary objects,
and several special subjects are covered.

� Workbench Organizer [Ext.]. This documentation explains how to organize large projects in
the R/3 System. Setting up the organizer and the transport system are described in detail.
Information is provided about version control and modification support.

� Extended Application Function Library [Ext.]. This documentation addresses such topics as:

– Standardized dialogs

– Central address administration

– Application logs

– Archiving

� Basis Programming Interfaces [Ext.]. This documentation describes the programming
interfaces for ‘R/3 components. These interfaces include the background processing system
and the batch input system.

BC ABAP Workbench Tutorial SAP AG

16 April 2001

Lesson 1: Understanding the Workbench Tools
In this lesson, you learn basic concepts and procedures associated with the Development
Workbench. This lesson contains the following information:

Introduction to Lesson 1 [Page 17]

Exercise 1: Opening the Workbench [Page 18]

Exercise 2: Learning the Workbench Tools [Page 19]

Exercise 3: Navigating an Object List [Page 21]

Exercise 4: Creating a Program [Page 22]

Exercise 5: Setting a Marker [Page 24]

Exercise 6: Creating a Transaction [Page 25]

Review of Lesson 1 [Page 26]

 SAP AG BC ABAP Workbench Tutorial

April 2001 17

Introduction to Lesson 1
This lesson introduces you to the ABAP Development Workbench and the tools it contains. When
you have completed this lesson, you will be able to:

� Identify concepts underlying the Workbench

� Open the Workbench in the SAP window

� Close the Workbench

� Identify the Workbench tools and their functions

� Navigate through a program

� Create a new program

� Create a new transaction

Before you continue with this lesson, be sure you have read the Note to the Reader [Page 8].

Workbench Concepts
You use the ABAP Development Workbench to create application programs. The Workbench is a
graphical programming environment [Ext.]. You access the programming tools using buttons,
dialogs, and windows that appear on your computer display. In the R/3 System, the parts of a
program a programmer creates are called development objects [Ext.].

Each ABAP application is either a transaction [Ext.] or a report [Ext.]. The example application
you create in this tutorial is a transaction. A transaction is an end-user application [Ext.].
Transactions retrieve data from users and then perform one or more relevant actions. For
example, an application that creates purchase orders is a transaction. Unlike transactions,
reports are applications that require little or no user interaction.

Underlying each transaction is a module pool [Ext.] program. Module pool is the term used to
describe the collection of ABAP language entities that drive a transaction.

BC ABAP Workbench Tutorial SAP AG

18 April 2001

Exercise 1: Opening the Workbench
If you have not already done so, log on to the R/3 System. Then, choose Tools � ABAP
Workbench from the menu bar. The system displays the ABAP Development Workbench screen

 [Ext.].

You can return to the initial screen at any time using the Back button. You can exit the R/3
System at any time by selecting System � Log off. When you logoff, the system prompts you to
confirm your choice.

Check Your Work
Experiment with the Workbench buttons and menus. You should feel comfortable using the
buttons on the toolbar. If you need a review of interface basics, read through the Getting Started
documentation.

As you work through the tutorial, you can stop, save your work, and exit the R/3 System. You
should feel comfortable doing this. Practice exiting from different parts of the Workbench.

 SAP AG BC ABAP Workbench Tutorial

April 2001 19

Exercise 2: Learning the Workbench Tools
In the last exercise, you learned how to open and how to close the Workbench. This exercise
acquaints you with each Workbench tool. If you have not already done so, open the Workbench.
Each tool in the Workbench serves a particular function in building an ABAP program.

The ABAP Dictionary stores system-wide data definitions. When you create a new data
definition, the Dictionary tool does all the processing necessary to create the definition. You can
use the Dictionary tool to look up the “definition” of objects in your R/3 System.

You use the ABAP Editor to create new code or change existing code. The ABAP editor can
check to make sure you use the correct syntax in your program. Once your program is
syntactically correct, you can generate, run, and debug your program from the Editor.

The Function Library is a repository of library routines. When you create a new routine, the
Function Library tool does all the processing necessary to create the new routine.

You use the Screen Painter and the Menu Painter to design a graphical user interface (GUI) for
your program. You use the Screen Painter to add fields, buttons, and other elements to a screen.
You use the Menu Painter to create the menus that go around a screen.

The Object Browser
The ABAP Development Workbench contains a special tool, the Object Browser. The Object
Browser provides a programming context. A carpenter building a cabinet has the cabinet’s
physical materials, such as the wood and nails, visible in front of him. As he builds, the
carpenter’s eyes provide a context to view the relationships between a cabinet’s materials.

Because a program consists of relationships between data, it is hard for a programmer to see the
relationships among separate data components. The Object Browser corrects this problem by
supplying the context for viewing programming relationships.

You can use the Object Browser to navigate through a list of development objects. Development
objects are the components you use to build an application. You can also view a single
development object. In the next exercise, you will learn how to navigate through an object list
with the Object Browser.

When you use the Object Browser, it automatically calls other tools when your actions require
them. For example, you create a new data definition from the Object Browser screen. The
Browser calls the Data Dictionary and, after you create your definition, returns you to the Browser
screen.

You can create an entire application using the Object Browser without directly calling any of the
other tools. In fact, the recommended method for creating an application is from the Browser
because you can see what you build. The lessons in this tutorial use this method.

Check Your Understanding
In this exercise, you learned a little about what each of the tools in the Development Workbench
can do. Take a minute to check your understanding of what you have just learned. Match each of
the following tasks with the Workbench tool that you would use to accomplish it:

� Debug a reporting program.

� Look up a data definition.

� Position a button on a dialog.

BC ABAP Workbench Tutorial SAP AG

20 April 2001

� View a list of the screens in a program.

This exercise also introduced the Object Browser. You learned that creating a program from the
Object Browser is the recommended method for creating ABAP programs.

 SAP AG BC ABAP Workbench Tutorial

April 2001 21

Exercise 3: Navigating an Object List
An object list is graphical organization of related development objects. For example, a program
object list contains all the objects in a program. The appearance of an object list [Ext.] is
similar to a directory listing in a graphical file manager. In this exercise, you learn how to open
and navigate through an object list. If you have not already done so, open the Development
Workbench. Then, proceed as follows:

1. Choose Object Browser to start the Browser.

The system displays the Object Browser: Initial Screen. At this point, you must choose
whether you want to look at an object list or a single object. For this exercise, you will
look at an object list.

2. Select Program in the Object list area and place your cursor in the adjacent field.

The system displays a possible entries push button beside the field. This button indicates
there are several possible entries.

3. Enter the name tutprog in the Program field.

4. Choose Display.

The Browser displays the program development objects. You can see that the tutprog
program contains several types of objects. Each object type has a folder icon beside it. A
plus sign (+) in a folder means the folder is closed.

5. Open the Global data folder by clicking the folder icon.

The Browser displays a list of the global data found in the tutprog folder. Notice that
the Global data folder now has a minus sign (-) to tell you that it is open.

6. Open ANSWER.

The Object Browser starts the ABAP Editor. If you have not used the Editor before, it
asks you to confirm the mode. Choose Continue to confirm PC-mode. The Editor opens
the tutprog program at the point where the global data ANSWER is declared [Ext.].

7. Use Back to return to the Object Browser: Initial Screen.

Check Your Understanding
In this exercise, you learned how to open an object list for a specific program. You used the
Object Browser to navigate through the object list to the tutprog program. The tutprog
program contains the example transaction you will create with this tutorial. Take a moment to
open some of the objects in the program object list.

If you like, you can execute the program by selecting the TUTPROG node and choosing
Development Object � Test/execute. When the system prompts you for an execution type,
select Direct.

BC ABAP Workbench Tutorial SAP AG

22 April 2001

Exercise 4: Creating a Program
This exercise teaches you how to create a program. The program you create will eventually
make up a complete application in the R/3 System. If you have not already done so, log onto
your R/3 System and open the Workbench to the Object Browser: Initial Screen. To create a
program, proceed as follows:

1. Select Local priv objects.

Each user has a local private object list. By default, the Browser assumes you want to
look at your own object list.

2. Choose Display.

The system opens your object list. If this is the first time you opened the list, it contains
only the Development class object types node. This node is interactive.

3. Double-click Development class object types.

The system prompts you for the type of object you want to create.

4. Ensure that Program object is selected and choose Continue.

The system displays a list of all the possible types of program objects.

5. Choose a program name.

The recommended format for your program name is SAPMZ<bbb> where <bbb> are your
initials.

6. Enter the program name you choose in the field provided [Ext.].

7. Ensure that Program is selected and choose Create.

The system prompts you to confirm your selection.

8. Ensure that the program name is correct and that With TOP INCL. is set.

9. Choose Continue.

The system prompts you for the name of the top include file. The convention for naming
include files is MZ<bbb>TOP where <bbb> are your initials.

10. Enter a name for the include file and choose Continue to accept it.

The system displays the program attribute screen.

11. Enter attribute values for your program as follows:

Title Create Flight Module Pool

Type M

Application *

12. Save your program attributes.

The system creates both your program and the include file.

Check Your Work
In this exercise, you created a new program and an include file. You will use these objects later
on in the tutorial. Right now, take a moment to check you work. Use the Object Browser to open

 SAP AG BC ABAP Workbench Tutorial

April 2001 23

your local private object list. Alternatively, if you are still in the program attributes screen, use the
Back button.

Use the Object Browser to open the Programs and Includes folders. Your object list should
contain the program and the include you created [Ext.].

BC ABAP Workbench Tutorial SAP AG

24 April 2001

Exercise 5: Setting a Marker
In this exercise, you learn how to set a marker. A marker is similar to a bookmark in that it lets
you get to a specific list within the Browser quickly. To set a marker, proceed as follows:

1. Select Goto � Markers.

The system displays a list of markers. The initial marker defines the first screen the
system displays when you start the Object Browser. By default, the system sets the
Workbench Selection Screen as the initial marker. You are going to set your private
object list as the default marker.

2. Select Development Class $TMP.

3. Choose Define init position.

The system places the Development Class $TMP in the initial position.

4. Press ENTER.

Check Your Work
Choose the Back button to return to the initial ABAP Development Workbench screen. Then,
open the Object Browser. The system takes you immediately to your private object list without
displaying the Initial Selection screen.

From the Object Browser menu bar, you can also select Goto � Initial Screen to return to the
initial screen of the Browser.

 SAP AG BC ABAP Workbench Tutorial

April 2001 25

Exercise 6: Creating a Transaction
Entwicklungsobjekt [Ext.]

This exercise teaches you how to create a transaction. A transaction is a module. To create a
transaction, go to your private object list and proceed as follows:

1. Open the Programs folder and double-click your new program.

The system displays the program object list. The list displays the objects related to your
program. At this point, the list should be empty.

2. Double-click the Program object types folder.

The system prompts you for a development object type.

3. Select Transaction.

At this point, you must choose a transaction name. Use the format ZF<xx> where <xx>
are your initials. Make sure you follow the SAP naming conventions [Page 14].

4. Enter a transaction name in the field provided and choose Create.

The system prompts you for a transaction type.

5. Select Dialog Transaction and choose Continue.

The system prompts you for some additional information.

6. Enter the following information:

Transaction Text Create Flight Data

Program The name of

the program you created in exercise 4.

Screen number 100

7. Save your work.

The system creates the new transaction.

Check Your Work
Your program object list should now contain a Transactions folder. Open your new transaction
and note the information associated with a transaction.

BC ABAP Workbench Tutorial SAP AG

26 April 2001

Review of Lesson 1
Lesson 1 introduced you to the ABAP Development Workbench and the tools it contains. You
learned that the Workbench is a programming environment for the ABAP language. This lesson
taught you how to open and how to exit the Workbench.

The names of the six major Workbench tools should now be familiar to you:

� Object Browser

� ABAP Dictionary

� ABAP Editor

� Function Library

� Screen Painter

� Menu Painter

This lesson placed particular emphasis on the Object Browser. You learned that this tool
provides a context for viewing your development environment. Using the Browser you looked at
the different parts of an existing program and created a new program. You also learned how to
set the initial marker.

In the Next Lesson...
Lesson 2 teaches you how to create a table. You will learn about concepts and more about some
important parts of the ABAP Dictionary.

 SAP AG BC ABAP Workbench Tutorial

April 2001 27

Lesson 2: Working with Tables
In this lesson, you learn how to create a table. This lesson contains the following information:

Introduction to Lesson 2 [Page 28]

Exercise 1: Creating a Table Object [Page 30]

Exercise 2: Specifying Table Fields [Page 31]

Exercise 3: Defining Data Elements and Domains [Page 33]

Exercise 4: Reusing Domains [Page 35]

Exercise 5: Defining a Value List [Page 37]

Exercise 6: Specifying Technical Settings [Page 38]

Exercise 7: Activating a Table [Page 39]

Review of Lesson 2 [Page 40]

BC ABAP Workbench Tutorial SAP AG

28 April 2001

Introduction to Lesson 2
Tables play a key role in the R/3 System. Tables define a database’s structure. You need a good
understanding of how to work with tables before going on to design and create complex tables.
After you complete this lesson, you will be able to:

� List the steps needed to create a table.

� Recognize the key components of a table.

� Identify the tool that creates tables.

� Create a table from the Object Browser.

� Activate a table.

� Add a field to a table.

� Define a value list.

� Specify how the system should handle a table.

When complete, your table will define the data used by your transaction (for example, departure
time, flight number, and arrival date).

Components of a Table
Each table in the R/3 System is composed of several components. These components are the
following:

table object Represents a table in the ABAP Dictionary.

fields Define information stored in a table.

data element objects Describe field content and determine how a field is displayed to the
end-user. Data elements appear as objects in the Dictionary.
Because they are objects in their own right, you can reuse data
elements within the same table or among fields in several tables.

domain objects Describe valid values for a field. A domain specifies information
like data type or number of positions in a field. Like data elements,
domains are stored as objects in the Dictionary. You can reuse
domains just as you can reuse data elements.

technical settings Specify how the R/3

System handles a table.

Summary of Table Design Process
Normally, before creating a table you would take a moment and plan what kind of data you
require. Your plan would include an understanding of the relationships between data. For this
lesson, the planning was done for you. Once a plan is in place, you proceed as follows to create
a table:

� Create a table object

� Specify fields

� Define data elements and domains

 SAP AG BC ABAP Workbench Tutorial

April 2001 29

� Specify technical settings

� Activate the table

As you create your table, you should save your work. When you save an object, it is placed in the
SAP database. The table status is set to saved. Other users can view saved objects, but they
cannot access them in ABAP programs.

After you complete a table object, you activate it in the database with the Activate operation.
When you activate a table, the system does the following:

� Checks the syntax.

� Updates the table status to active.

� Compiles a runtime version of the table.

Once a table is active, other programs and users can access it.

BC ABAP Workbench Tutorial SAP AG

30 April 2001

Exercise 1: Creating a Table Object
If you are not already there, use the ABAP Object Browser to display your table object. Go to
your private object list and proceed as follows to create a table:

1. Select Development class object types.

The system prompts you for an object type.

2. Double-click the Dictionary objects and choose Continue.

The system prompts you for the type of Dictionary object you want to create.

At this point, the system is processing your input using the ABAP Dictionary tool. You did
not have to leave the Object Browser; the system opened the Dictionary for you.

3. Select Table and enter a table name in the adjacent field.

Dictionary objects are global to the SAP system. The name you select must be unique.
You should select a name in the form Z<xx>FL, where <xx> are your initials [Ext.].

4. Choose Create.

The system prompts you for some additional information:

5. Enter the following information:

Short Text Flight Table

Delivery Class A

6. Set Tab Maint. Allowed.

7. Save your table.

The system creates a table object and adds it to your local object list.

Check Your Work
Take a moment to check your work. Use Back to return to your local object list. You should now
have a Dictionary Objects folder. Open the folder to view your new table object.

 SAP AG BC ABAP Workbench Tutorial

April 2001 31

Exercise 2: Specifying Table Fields
In the previous exercise, you created an empty table object. In this exercise, you add the table
fields. Recall that table fields define the information stored in a table. Normally, a table has one or
more fields. You can create a table that has no fields but it would have little use in the R/3
System.

To identify a field, go to your private object list and proceed as follows:

1. Select your new table object.

2. Choose Change.

The system displays the Change Table/Structure Attributes screen. You specify fields by
entering information in the Field Attributes section of the screen.

3. Enter FLID for the name of the first field.

The FLID field is the key field for the table.

4. Set the Key check box.

When a checkbox is set, the box becomes filled [Ext.].

5. Save your changes.

The system removes empty fields and saves your table.

Define the Remaining Fields
You now have a single field in your table object. The FLID field is the table KEY. Take a moment
and identify the remaining fields in your table. You do not need to set the Key checkbox for the
remaining fields. Select New fields to display some empty fields. Then, define the following table
fields:
LVCITY

LVDATE

LVTIME

REGLR

CHRTR

MOVIE

SNACK

FMEAL

ARCITY

ARDATE

ARTIME

Check Your Work
At this point, you have created a table object and identified the table´s fields [Ext.]. You can
look at your table from the Dictionary. Use Environment � ABAP Dictionary to open the
dictionary from an Object Browser screen.

BC ABAP Workbench Tutorial SAP AG

32 April 2001

 SAP AG BC ABAP Workbench Tutorial

April 2001 33

Exercise 3: Defining Data Elements and Domains
In the previous exercise, you identified the fields you want in your finished table. This exercise
teaches you how to define data elements and domains. Remember, data elements describe field
content and determine how a field appears on a screen. Domains describe valid values for a
field.

Before you begin, ensure that your table is open on your SAP Workbench. If the table is not
open, use the Object Browser to reache and open your table object. To define a data element
and a domain for a field, proceed as follows:

1. Ensure that the table is in change mode.

To put the table in change mode, choose Display�Change.

2. Choose a data element name for the FLID field.

Because data elements are objects, they must have unique names. Choose a name in
the form Z<xx>_FLID, where <xx> are your initials.

3. Enter the name you choose in the FLID Data elem. field.

4. Double-click the Data elm. field.

The system asks you to confirm that you want to create the data element.

5. Choose Continue.

The system displays the Change Data Element screen.

6. Enter the following information:

Short

text

Flight ID

Domain

name

z<xx>_FLID

You can use the data element name for the Domain name field [Ext.].

7. Enter the following in the Texts group box of the screen [Ext.]:

Short 9 Flight ID

Medium 13 Flight ID Num

Long 16 Flight ID Number

The information in the Texts group box is used later by the system to label fields in your
interface automatically.

8. Save the data element.

9. Double-click the Domain name field.

The system confirms your selection.

10. Choose Continue.

The system displays the Change Domain screen.

11. Enter the following information:

BC ABAP Workbench Tutorial SAP AG

34 April 2001

Short text Flight ID

Data type Char

Field length 5

12. Choose Activate.
The system saves the domain object and activates it. Activating an object makes it
visible in the SAP database. The status of the domain should be active.

13. Go back to the Dictionary: Change Data Element screen.

14. Choose Activate to add the new data-element object to the SAP database.

15. Go back to the Dictionary: Table/Structure Change Fields screen and Save your work.

Check Your Work
You have defined two new objects: a data element object and a domain object. These objects
now appear in your local private-object list. Open your local private object list. In the Dictionary
objects folder, you have two new folders: Data elements and Domains. Open these new folders
to view your new data element and domain.

 SAP AG BC ABAP Workbench Tutorial

April 2001 35

Exercise 4: Reusing Domains
In the previous exercise, you defined a data element and domain for a single field in a table.
From the Change Table/Structure screen you should see the completed information for the
Z<xx>_FLID field. In this exercise, you will define the data elements and domains for the
remaining fields in your table.

This exercise also teaches you how to reuse existing domain definitions. Recall that a field is
associated with a single data element and single domain. You can reuse data elements and
domains for fields in the same table or for fields in other tables. This exercise shows you how to
share domains and data elements between fields in the same table.

Specify Additional Data Elements and Domains
If you are not already there, open the Change Table/Structure dialog. Then, using the procedure
you learned in exercise 3, create data elements and domains for the following fields:

Field Data Elm Short Text Domain Data Type Field Length
LVCITY Z<xx>_LVCITY Dep. City Z<xx>_CITY CHAR 5

LVDATE Z<xx>_LVDATE Dep. Date Z<xx>_DATE DATS 8

LVTIME Z<xx>_LVTIME Dep. Time Z<xx>_TIME TIMS 6

About the Data Elements: This exercise does not provide you with values for the
Texts group box. Enter values for this box that make sense to you.

Reuse Domains with Remaining Data Elements
Now, use the 3 new domains you just defined (Z<xx>_CITY, Z<xx>_DATE, Z<xx>_TIME) and
the system defined domain, CHAR1, to specify the remaining data elements and domains.
Proceed as follows to define the remaining data elements:

1. Place your table in change mode if necessary.

2. Enter a data-element name in the Data elem. field.

Because data elements are objects, they must have unique names. Choose a name in
the form Z<xx>_REGL, where <xx> are your initials.

3. Select the Data elem. field.

The system asks you to confirm that you want to create the data element.

4. Select Cont.

The system displays the Change Data Element screen.

5. Enter the following information:

Short text Regular Flight
Domain name CHAR1

CHAR1 is a system-defined domain.

6. Complete the Texts group box of the screen [Ext.].

BC ABAP Workbench Tutorial SAP AG

36 April 2001

7. Save the data element.

8. Choose Activate to add the new data element to the Dictionary.

9. Go back to the Change Table/Structure screen and Save your work.

10. Repeat steps 2 through 9 for the remaining fields using the following information:

Field Data Element Short Text Domain
CHRTR z<xx>_CHRTR Charter Flight CHAR1

MOVIE z<xx>_MOVIE Inflight Movie CHAR1

SNACK z<xx>_SNACK Light Snack CHAR1

FMEAL z<xx>_FMEAL Full Meal CHAR1

ARCITY Z<xx>_ARCITY Arrival City Z<xx>_CITY

ARDATE Z<xx>_ARDATE Arrival Date Z<xx>_DATE

ARTIME Z<xx>_ARTIME Arrival Time Z<xx>_TIME

Do not forget to fill in the Texts group box for each data element.

Check Your Work
In this exercise, you have learned how to reuse existing domains. You learned that system
defined domains also exist and that you can use them as well. Use the Object Browser to go to
your local private-object list and view the new objects you created.

In your list, compare the number of new data elements to the number of domains. The number of
data elements exceeds the number of domains. Notice that each domain only appears once in
the list even though it is used by several fields. Also, you can see that system-defined domains
(for example, CHAR1) do not appear in your domain list. This is because these objects are
defined system-wide, not locally.

 SAP AG BC ABAP Workbench Tutorial

April 2001 37

Exercise 5: Defining a Value List
In the last exercise, you defined domains for your table fields. Recall that a domain describes
valid field values. Often, you can narrow down the acceptable values for a field to a set of fixed
values. This set is called a fixed-value list [Ext.].

In this exercise, you learn how to define a fixed-value list for the Z<xx>_CITY domain. To define
a fixed-value list for the Z<xx>_CITY domain, go to your private object list and proceed as
follows:

1. Open the Domains folder.

2. Select your city domain and choose Change.

The system displays the Dictionary: Maintain Domain screen.

3. Choose Fixed Values.

4. Enter MUC in the first lower limit column.

5. Enter Munich for the Short text.

6. Add the following values:

Value Short Text
TXL Tegel Field, Berlin

THF Tempelhof, Berlin

DEN Denver

EWR Newark, New Jersey

JFK New York

CDG Paris

YYZ Toronto

7. Save the list.

8. Go back to the Dictionary: Maintain Domain screen.

9. Choose Activate to save your changes and update the SAP database.

Check Your Work
Use the Object Browser to view your domains. Select the Z<xx>_CITY domain and check for the
value list you just created.

BC ABAP Workbench Tutorial SAP AG

38 April 2001

Exercise 6: Specifying Technical Settings
This exercise teaches you how to define technical settings for your table. Recall technical
settings influence how the system handles a table. If you have not already done so, open the
Table/Structure screen. To define technical settings, ensure your table is in change mode and
proceed as follows:

1. Choose Technical settings.

2. Ensure that the Technical Settings screen is in change mode.

3. Enter APPL1 in the Data class field.

Data class of APPL1 indicates the table is updated frequently.

4. Enter a 1 in the Size Category.

Size category of 1 specifies that the table is small.

5. Save your settings.

6. Go back to the Dictionary: Table/Structure Change screen.

7. Save your table.

Check Your Work
You have finished specifying the technical settings for your table. If you like, display the
Technical Settings screen to verify your work.

 SAP AG BC ABAP Workbench Tutorial

April 2001 39

Exercise 7: Activating a Table
In the previous exercises, you constructed a complete table object. This exercise teaches you
how to activate a table. Recall that, after you activate a table, other programs can reference the
table. To activate your table, proceed as follows:

1. Open your table object in change mode.

2. Choose Activate.

The system compiles the underlying table code, creates a runtime version of the table,
and updates the table status to active.

Check Your Work
When the compile is finished, the system changes the table Status field to Active [Ext.].

BC ABAP Workbench Tutorial SAP AG

40 April 2001

Review of Lesson 2
In Lesson 2, you created a new table. This table defines the data used by your transaction, for
example, departure time, flight number, and arrival date. You learned that tables have 5
components:

� A table object

� Fields

� Data element objects

� Domain objects

� Technical settings

Without these 5 components, you cannot add a table to the SAP database. The lesson also
taught you that Dictionary objects like tables, data elements, and domains are system-wide
objects.

During the course of this lesson, you went through the steps for creating a table. These steps
are:

� Create a table object.

� Identify fields.

� Define data elements and domains.

� Specify technical settings.

� Activate the table.

You also learned that data elements and domains are re-usable. You can use data elements and
domains you define for one table in many tables.

In the Next Lesson...
Lesson 3 teaches you how to use the Screen Painter tool. You will use the Screen Painter to
design your transaction screen. Additionally, Lesson 3 teaches you how to layout gadgets and
buttons. Finally, you will learn how to specify screen field attributes.

 SAP AG BC ABAP Workbench Tutorial

April 2001 41

Lesson 3: Designing Screens
Lesson 3 teaches you about the Screen Painter. This lesson contains the following information:

Introduction to Lesson 3 [Page 42]

Exercise 1: Creating a Screen [Page 43]

Exercise 2: Placing an Element on a Screen [Page 44]
Exercise 3: Refining a Screen [Page 46]

Exercise 4: Checking the Screen Layout [Page 48]

Exercise 5: Setting the OK Field [Page 49]

Review of Lesson 3 [Page 50]

BC ABAP Workbench Tutorial SAP AG

42 April 2001

Introduction to Lesson 3
In the previous lesson, you created a table that described your application’s data. Lesson 3
teaches you how to create a screen where an end-user can enter data. A screen is an
arrangement of graphical elements that appear in a window [Ext.]. After you complete this lesson,
you will be able to:

� Identify major concepts associated with an ABAP screen.

� Create an initial screen.

� Arrange the elements in a screen.

� Characterize screen elements.

� Run a prototype of a screen.

Screens and menus make up the graphical user interface (GUI) for an ABAP application. Lesson
4 teaches you how to create menus. Before you complete this lesson, you must have
successfully completed Lesson 2.

Screen Concepts
To create a screen, you must understand what components underlie a screen’s graphical
elements and the screen itself. Some examples of screen elements are push buttons, radio
buttons, labels, and boxes. Each element has associated with it:

attributes Describe a screen. Screen attributes include things like a description, a
type, and position.

layout Refers to the arrangement of elements on a screen.

field attributes Describe an element. For example, a particular field accepts only
character input.

flow logic Describes the relationship between a screen element and its underlying
application. Flow logic is a series of instructions.

You create and maintain all ABAP screen elements in the Screen Painter.

The Screen Painter has a fullscreen editor. You use this editor to layout screens. The fullscreen
editor works in two modes: graphical and alphanumeric. In graphical mode, you use dialogs and
a mouse to identify and create elements. Graphical mode is available only on Unix/Motif,
Windows 95, and Windows NT platforms.

Alphanumeric mode, the default, is available on all platforms. This lesson uses the graphical
mode.

 SAP AG BC ABAP Workbench Tutorial

April 2001 43

Exercise 1: Creating a Screen
In this exercise, you create a screen and identify its attributes. Before you begin, ensure that you
are in your program object list [Ext.] and proceed as follows:

1. Double-click Program object types.

The browser displays the list of possible program objects.

2. Select Screen.

At this point, you must specify a screen number.

3. Enter 100 for the screen number.

4. Choose Create.

The system displays the Change Screen Attributes screen.

5. Enter the following information:

Short Description Create Flight Data

Screen type Normal

Next screen 100

ABAP programs can determine the screen sequence dynamically. This means it is not
necessary to specify a different screen for the Next Screen attribute.

6. Save the screen and return to the program object list.

Check Your Work
In this exercise, you created a single screen. You should now have a Screens folder in your
program object list. In subsequent exercises, you will populate your new screen with graphical
elements.

BC ABAP Workbench Tutorial SAP AG

44 April 2001

Exercise 2: Placing an Element on a Screen
In this exercise, you use the Screen Painter fullscreen editor to add an element to your screen.
Ensure that you are in the object list for your program and proceed as follows:

1. Select Screen 100 and choose Change.

The browser displays the Flow Logic Display screen.

2. Ensure that you have the set the fullscreen editor to graphical mode.

You can set the mode by choosing Settings � Graph. Fullscreen.

3. Choose Fullscreen.

The system opens the Screen Painter fullscreen editor [Ext.].

4. Choose Dict/Prog Fields.

The Screen Painter displays the Dict./program fields dialog. You use this dialog to copy
existing fields from a table or program into your screen.

5. Enter your table name in the Table/field name field.

6. Choose Get from Dict.

The system retrieves the list of fields from your table and lists them for you.

7. Select the flight ID field.

8. Set Template and set Key word to Average.

9. Choose Copy.

The Screen Painter window moves into the foreground.

10. Place the table field by positioning your cursor in the work area and pressing the left mouse
button.

The flight ID appears with a label and an entry field in the work area. Once an element is
placed, you can reposition it by selecting it again and dragging it to a new location
[Ext.].

11. Save your changes.

Add the Remaining Fields
Try some new techniques to add the rest of the elements to your dialog. You should have the
following elements remaining:

� Arrival/departure city

� Arrival/departure date

� Arrival/departure time

� Regular flight

� Charter flight

� Snack

� Meal

 SAP AG BC ABAP Workbench Tutorial

April 2001 45

� Movie

Add several elements at once by selecting them in the Dict./program fields dialog. Add the
departure city, date, and time using this method. Select the fields as a group [Ext.] and
choose Copy to add them as a group [Ext.].

Add the remaining fields to your dialog. Group the arriving city, date, and time in the same
manner as you grouped the departure elements. Add the regular and charter fields as a group.
Finally, add the meal, snack, and movie fields as a block.

If you need to, you can position several elements by using a “rubber-band” to select a whole
group of elements. Then, drag the group to another place in the screen [Ext.].

Check Your Work
You have created a simple interface using the Screen Painter. Try looking at your interface as it
will appear to your users. While still in the fullscreen editor, choose Screen � Test. The system
prompts you for the window coordinates.

Your new screen appears in the SAP application window. Experiment with your interface. Try to
enter values for each of your fields. You will find that, for some fields, the domain helped
determine interface behavior. For example, try entering a departure time using the possible
entries button.

BC ABAP Workbench Tutorial SAP AG

46 April 2001

Exercise 3: Refining a Screen
In this exercise, you learn how to refine the look of your screen. You will change two existing text
fields into radio buttons and you will add labels and boxes to define different areas of your
screen. Before you begin, open the Screen Painter fullscreen editor to screen 100.

Convert Fields to Radio Buttons
The Regular and Charter fields on your screen describe two types of flights. A flight is either one
type or the other. In an interface, radio buttons are used to indicate a single choice among a set
of mutually exclusive choices. To convert the text fields to radio buttons, proceed as follows:

1. Use a “rubber-band” to select both the Regular and Charter fields.

The Screen Painter indicates the fields are selected.

2. Choose Edit � Convert � Radio button � Button left.

The Screen Painter converts both fields to radio buttons. Now, you need to group the
buttons so that they are mutually exclusive.

3. Select Edit � Radio button group � Define.

The Screen Painter groups the buttons. Small handles in the shape of diamonds appear
along the sides of the group [Ext.]. Use the square handle at the top to move the
group. Use the diamond handles to reshape the group if necessary.

4. Save your changes.

Add a Box
You can add a box around the schedule elements on your screen to indicate that they are
related:

1. Select the Frame tool from the palette.

2. Move your cursor into the work area.

The cursor changes shape to indicate you are about to draw a box.

3. Draw a box around the flight information in your screen.

Position the cursor to the left of the group. Hold down the left mouse button and drag the
cursor down and to the right [Ext.]. The painter creates a frame around the group.
When you release the left mouse button, the box remains selected.

4. While the box is selected, use the keyboard to type Schedule.

The system creates a title for your new box.

5. Repeat steps 1 through 3 to create a box around the radio group.

6. Title the new box Classification.

7. Save your changes.

 SAP AG BC ABAP Workbench Tutorial

April 2001 47

Convert Fields to Check Boxes
Convert some existing fields to check boxes. Check boxes are used for choices that are either
set or not set. When a choice is set, a check mark appears in the box. Proceed as follows to add
check boxes:

1. Select the Snack, Meal, and Movie fields.

The Screen Painter indicates both fields are selected.

2. Choose Edit � Convert � Check box � Button left.

The Screen Painter converts the fields to check boxes. Because each check box is an
individual choice that does not rely on the other choices, you do not need to group the
check boxes.

3. Save your changes.

Check Your Work
Take a moment to examine what you have accomplished. Test your newly refined dialog. Your
screen in simulation mode appears as it will to your users [Ext.]. Recall that, by definition,
radio buttons have logic. If one button is selected, the others must not be. As you test your
dialog, you will notice the Screen Painter added the radio button logic for you.

BC ABAP Workbench Tutorial SAP AG

48 April 2001

Exercise 4: Checking the Screen Layout
In this exercise, you learn how to check the layout of a screen and use the Attributes dialog to
position an element. It is a good idea to follow the R/3 style guidelines when creating your
interface. Open the Screen Painter fullscreen editor to screen 100. Then check the layout of your
screen by choosing, Screen � Check � Layout. The system lists the errors in your layout.

You can use the Attributes dialog to quickly fix the position of an element. To use the dialog,
proceed as follows:

1. Select the element.

2. Press Attributes.

The system displays the current attributes for the element.

3. Enter a new value in the Line field.

This value determines the vertical position of the element.

4. Enter a new value in the Column field.

This field determines the horizontal position of the element.

5. Choose Close.

The system changes the position of the element.

Check Your Work
Test your update to screen 100. You should notice the difference in the position of your screen
elements [Ext.].

 SAP AG BC ABAP Workbench Tutorial

April 2001 49

Exercise 5: Setting the OK Field
In this exercise, you leave the fullscreen editor and use the Field list view to set the OK field.
Each SAP screen has a single OK code. This OK code is used to pass information from the
screen to the underlying application. To set the OK code, open your screen to the Flow Logic
Display screen and proceed as follows:

1. Choose Field list or, if the screen is already open in change mode, select Goto � Field list
views � List field types.

The system displays the field list for your screen. This list is a table representation of the
same data available through the Attributes dialog.

2. Page down until you find a FType specification of OK.

The Field name for this specification is empty [Ext.].

3. Enter OK-CODE for the Field Name.

The OK-CODE field is available with every screen. It is an invisible element and so does
not appear in the Screen Painter fullscreen editor. You will use the OK code to pass
information from the interface back to your application.

4. Save your changes.

Check Your Work
To check your work, display the General Field Attribute list for your screen. The OK-CODE field
appears at the bottom of the list.

BC ABAP Workbench Tutorial SAP AG

50 April 2001

Review of Lesson 3
Lesson 3 taught you how to use the Screen Painter. You learned that a screen is an arrangement
of graphical elements that appear in a window. Graphical elements include things like radio
buttons, push buttons, text fields, and check boxes.

You learned that graphical elements have attributes. Attributes include things like the name of the
element and the position of the element on the screen.

This lesson taught you how to refine a screen by adding boxes and labels to different areas of a
screen. Finally, you learned how to use the Screen Painter to view a prototype of your new
interface.

In the Next Lesson...
Screens and menus make up the graphical user interface (GUI) for an ABAP application. In
lesson 4 you learn how to create menus.

 SAP AG BC ABAP Workbench Tutorial

April 2001 51

Lesson 4: Specifying a GUI Status
This lesson introduces you to the process of creating a GUI status. The lesson contains the
following information:

Introduction to Lesson 4 [Page 52]

Exercise 1: Create a GUI Status [Page 53]

Exercise 2: Add Menus to Your Interface [Page 54]

Exercise 3: Define Function Keys [Page 55]

Exercise 4: Specify PushButtons [Page 56]

Exercise 5: Finish Up [Page 57]

Review of Lesson 4 [Page 58]

BC ABAP Workbench Tutorial SAP AG

52 April 2001

Introduction to Lesson 4
Lesson 4 teaches you how to use the Menu Painter tool to create a GUI status and its
accompanying menu bars. In the previous lesson, you created screens [Ext.]. In this lesson, you
add menu bars to the screens. After you complete this lesson, you will be able to:

� Define the concepts underlying ABAP menus.

� Create a menu bar for a screen.

� Define function keys.

� Create a tool bar for a screen.

� Specify window titles.

To complete this lesson, you must have first successfully completed Lesson 3.

Menu Concepts
Within ABAP you use two tools to create a GUI. You use the Screen Painter to create screens
that contain radio buttons, check boxes, text fields, and push buttons. You use the Menu Painter
to create the interface components. These components are the following:

status Defines the combination of menu bars, menu lists, F-key settings, and
functions available to an interface. For example, an Editor application
might have two statuses: edit and view. In edit status, the cut function is
available and with the view status the cut function is unavailable.

menu bars Define functions available to the user. Where the functions appear
depend on the dialog. If the dialog is modal, the functions appear at the
bottom of the interface as a row of buttons [Ext.]. In the primary
window, the functions can appear both as a row of menus and as buttons
in a tool bar.

menu list Lists the items in a specific menu. For example, an edit menu might
contain items like copy, cut, and replace.

F-key settings Define keyboard keys associated with a particular interface function.

Functions Define individual functions such as cut, copy, and replace.

Titles Define window titles for an interface.

You can share components between statuses. For example, you can define a delete function.
Then, you can use this function in the statuses belonging to an editor application, a file manager,
and an accounting application.

After you create a GUI status, you must generate [Ext.] it. When you generate a menu, the
system creates a runtime version of the status. The runtime form is used when a user executes
an application.

 SAP AG BC ABAP Workbench Tutorial

April 2001 53

Exercise 1: Create a GUI Status
A GUI status [Ext.] is associated with a particular screen or set of screens. In this exercise, you
will define a GUI status for your screens. To define a status, do the following:

1. Open your program object list.

2. Double-click on Program Object Types.

The system prompts you for an object type.

3. Select GUI Status.

4. Enter 100 in the status field.

The value you enter in the status field is used as the status identifier. If you like, you can
specify an identifier that suggest the function of the status. For example, you might call
the status createflt.

5. Choose Create.

The system displays the Create Status dialog.

6. Enter Create Flight Data in the Short Text field.

7. Select Screen.

8. Choose Continue.

The system displays the Maintain Status dialog.

9. Save your new status.

Check Your Work
Take a moment and ensure that you successfully created your first GUI status. Because a status
is a programming object, the system created a new GUI status folder in your program’s object
list. Check the contents of the folder to make sure your new status is there.

BC ABAP Workbench Tutorial SAP AG

54 April 2001

Exercise 2: Add Menus to Your Interface
Exercise 2 teaches you how to add menu bars to the screens you created in Lesson 3. If you
have not already done so, open the browser to your program object list. Then, do the following:

1. Open the status you created in exercise 1.

The system displays the Maintain Status dialog.

2. Ensure that the status is in change mode.

For this example, you will use the standard default menus.

3. Click on the Display standards button.

The system displays the standard default menus [Ext.].

4. Replace the <Object> menu with Flight.

To do this, place your cursor in the menu field and enter Flight.

5. Double-click on Flight.

The system displays a list of the standard menu items. To define menu items, you must
enter valid values in the function column.

6. Enter the following menu items:
CREA Create
UPDA Change
DISP Display
DELE Delete

7. Save your changes.

Check Your Work
Test your new menu bar along with your Create Flight Data screen. Ensure that the GUI status
100 is open and select User Interface � Test status. In the Status Simulation dialog, enter 100
for the screen number.

When you run your simulation, notice that the system has automatically provided two menus:
System and Help.

 SAP AG BC ABAP Workbench Tutorial

April 2001 55

Exercise 3: Define Function Keys
In this exercise, you define function keys for your menus. If you have not already done so, open
status 100 in your program. Ensure the status is in change mode and do the following:

1. Enter Flight F-Keys in the F key assignment field.

2. Scroll down to the Recommended function key settings area.

3. Enter DELE as the function and for the Shift-F2 key.

4. Scroll down to the Freely assigned function keys area.

5. Fill in the first three keys with the following:

F5 UPDA Change

F7 DISP Display

F2 CREA Create

6. Save your changes.

Check Your Work
Take a moment to test your latest changes. Right now, you cannot test the function keys except
to check that choosing them does not cause the system to return an error.

BC ABAP Workbench Tutorial SAP AG

56 April 2001

Exercise 4: Specify PushButtons
This exercise teaches you how to specify pushbuttons in the application and standard toolbars.
You can specify a push button for any function that is defined for a function key. For example, in
the last exercise you created an Create function key. In this exercise, you create a
corresponding Create button. Open status 100 in change mode and do the following:

1. Select the first Application toolbar setting.

2. Enter the CREA function and press ENTER.

The system automatically displays the text Create and an appropriate icon. Recall that
you entered this text when you defined the function key.

3. Enter the remaining functions:
DISP
UPDA
DELE

4. Add the SAP default functions (back, exit, cancel) to the Standard toolbar area:

5. Save your changes.

Check Your Work
Use the Test function to view the new push buttons.

 SAP AG BC ABAP Workbench Tutorial

April 2001 57

Exercise 5: Finish Up
In the previous exercise, you define a status for a dialog window. In this exercise, you learn how
to create a title for a screen or a window. You also learn how to generate [Ext.] your GUI status.
Before you begin, ensure that you are in your program’s object list.

Title Your Interface
To specify a title for your interface, do the following:

1. Select the Program object types folder.

The system displays a list of the object types you can create.

2. Select GUI Title.

3. Enter 100 for the title code.

4. Choose Create.

The system displays the Create Title dialog.

5. Enter Create Flight Data for the title.

6. Choose Save.

Generate Your Status
Recall that when you generate a status, the system prepares a load version of the menu for the
user. To generate your new status, ensure that you are in your program’s object list and do the
following:

1. Select GUI status 100.

2. Choose Generate/activate.

The system sends a message to the status line telling you status 100 was generated
[Ext.].

Check Your Work
The system created a new folder for you in your program’s object list. This folder contains all the
GUI titles. You can use the test function to test your completed interface: the titles, the screens,
and the menus. This time, you can specify both a screen number and a title number.

BC ABAP Workbench Tutorial SAP AG

58 April 2001

Review of Lesson 4
Lesson 4 taught you about GUI statuses. Each ABAP interface has at least one GUI status
[Ext.]. A GUI status is associated with a menu bar. You learned that a GUI status describes
menu bar elements and their availability.

You learned how to use the Menu Painter tool to create menu bars. You used the Menu Painter
to create menus, function keys, and push buttons. The Menu Painter’s test feature allowed you
to run a prototype of your new interface.

Finally, you created a GUI title. You also learned that a complete interface requires a screen, a
status, and a title.

In the Next Lesson...
The next lesson introduces you to writing code. You learn how to tie your interface to an
underlying transaction. You also learn how to provide feedback to your users through messages.
Lesson 5 concludes with a short example of how to use the debugging tool.

 SAP AG BC ABAP Workbench Tutorial

April 2001 59

Lesson 5: Coding the Transaction
Lesson 5 teaches you how to use some of the features in the ABAP Editor. This lesson covers
the following topics:

Introduction to Lesson 5 [Page 60]

Exercise 1: Writing Flow Logic [Page 61]

Exercise 2: Creating Modules [Page 62]

Exercise 3: Specifying Global Variables [Page 63]

Exercise 4: Coding the Modules [Page 64]

Exercise 5: Creating a Message Class [Page 66]

Exercise 6: Testing Your Transaction [Page 67]

Exercise 7: Running the Debugger [Page 68]

Review of Lesson 5 [Page 69]

BC ABAP Workbench Tutorial SAP AG

60 April 2001

Introduction to Lesson 5
In this lesson, you use the editor tool to enter ABAP code. After you complete this lesson, you will
be able to:

� Identify underlying coding concepts.

� Create screen flow logic.

� Generate a screen interface.

� Create code modules.

� Copy code modules from existing modules.

� Check syntax.

� Create messages.

Coding Concepts
To complete your application, you must create the instructions that tell the R/3 System how to
process information your users enter. These instructions consist of the screen [Ext.] flow logic
and the ABAP modules [Ext.].

Flow logic is associated with each screen. Screen flow logic is divided into processing that occurs
before output and processing that takes place after the user enters data in a screen. There are
only 20 screen keywords for writing screen flow logic. Keywords can, in turn, refer to ABAP
modules.

The process before output (PBO) modules and the process after input (PAI) modules are specific
ABAP modules that direct processing. The PBO and PAI modules are stored in the module pool
of the transaction.

In this lesson, you also create a message class. A message class groups messages used by a
particular application or group of applications.

 SAP AG BC ABAP Workbench Tutorial

April 2001 61

Exercise 1: Writing Flow Logic
This first exercise teaches you how to write flow logic for your screens. Flow logic is written using
less than 20 keywords. These keywords provide pointers to ABAP code modules. Before you can
begin, you must be in your program object list.

1. Open screen 100.

The system places you in the Screen Painter Flow Logic Editor automatically.

2. Ensure the screen is in change mode.

3. Enter the following below the process before output entry [Ext.]:
module initialize_100.

The MODULE keyword identifies the ABAP module that defines the processing.

4. Insert several blank lines after the process after input entry.

5. Enter the following keywords and values:
field <tablename>–<idfield>.
module fcode_100.

<tablename> is the name of your table. <idfield> is the name of the flight ID field.
Remember to enter a period after each statement.

6. Choose Screen � Generate.

Generating the screen saves your changes and prepares a runtime version [Ext.] of your
screen.

Check Your Work
You have now completed the screen flow logic for your screen. Use the Screen � Check �
Syntax function of the Screen Painter to make sure you did not make any typing errors when
entering your logic code.

BC ABAP Workbench Tutorial SAP AG

62 April 2001

Exercise 2: Creating Modules
In the last exercise, you created screen flow logic that referenced specific ABAP modules.
Exercise 2 teaches you how to create these modules.

1. Open screen 100 in change mode.

2. Open the initialize_100 module by double-clicking it.

The system asks you if you want to create a new module. If the module already existed,
the system would take you to it automatically.

3. Choose Yes.

The system displays the Create PBO Module dialog. This dialog asks for the name of an
include file to place the module in.

4. Select New include.

At this point, you must choose a name for the include file. The name should be in the
form MZ<bb>O01. Be sure that you use the SAP naming conventions [Page 14].

5. Enter the name of your new include file and choose Continue.

The system displays the include file with the new initialize_100 module.

6. Save the new include file and return to the flow logic screen.

7. Repeat steps 1 through 6 for the fcode_100 module but use the form MZ<bb>I01 for the
include file name.

Check Your Work
Test your changes. When you double-click a module definition in the flow logic for a screen, the
system automatically opens the code that the definition references. Try this with your new
modules. You can also open your table automatically by selecting the field reference in the
screen flow logic.

 SAP AG BC ABAP Workbench Tutorial

April 2001 63

Exercise 3: Specifying Global Variables
In this exercise, you specify global variable declarations. You add these declarations to your
program top include file. Recall that you created the top include file [Page 22] in lesson 1. To
specify global variables, ensure that you are in your program object list and proceed as follows:

1. Select your top include file and choose Change.

The system opens your file for editing. The program declaration must be the first one in
the file. The system added this declaration automatically when you created the include.
You should enter your changes below the program declaration line.

2. Declare your table with the following statement:
tables: <tablename>.

Substitute your table name for the <tablename> variable. You must declare a variable
for each screen element that accepts input and from which your program takes data.

3. Add the following declarations to the file:
data answer.
data: ok-code(4), fcode(4).

At this point, you must choose a name for your message class. The name should be in
the form z<x> or y<x>. Be sure that you use the SAP naming conventions [Page 14].

4. Extend the PROGRAM statement by adding a message ID.
program sapmzaaa message-id <xx>.

5. Save your changes.

Check Your Work
Test and make sure you entered your global data correctly. Select Program � Check �
Current Program to check your program syntax. The system displays any errors.

You can also double-click the table name. When you double-click the table name, the system
opens the table for you.

BC ABAP Workbench Tutorial SAP AG

64 April 2001

Exercise 4: Coding the Modules
In the previous exercise, you used the ABAP Editor to add code to your top include file. In this
exercise, you enter code using the keyboard and special features of the Workbench environment
both to copy code and automatically insert predefined functions.

Entering Code with the Editor
1. Open the PBO modules folder in your program object list.

2. Select the INITIALIZE_100 module and choose Change.

The system opens the module in change mode.

3. Enter the following in the line following module initialize_100 output [Ext.]:
set pf-status ’100’.
set titlebar ’100’.

4. Save your changes and return to your program list.

Copy Code from Another Program
Programmers often create new programs by copying and then modifying existing programs. You
can do this with the Workbench tools.

1. Return to the Object Browser initial screen.

2. Select Program and enter TUTPROG for the program name.

The system takes you to the example program.

3. Choose Display.

4. Open PAI module FRAGMENT.

The system opens the module in display mode.

5. Place your cursor in the line containing the fcode = ok-code entry.

6. Choose Select.

The system marks the line [Ext.].

7. Select the endcase entry on line 97 and choose Select.

8. Select Block/clipboard � Copy to clipboard.

9. Exit the module and return to your program object list.

If you like, you can use the Markers feature to return to your object list.

10. Select your FCODE_100 module and choose Change.

11. Place your cursor in the empty line below module fcode_100 input.

12. Choose Block/clipboard � Insert from clipboard.

The system inserts the section from FRAGMENT.

13. Use the Edit � Replace function to replace wbtable with your table name [Ext.]:

14. Save your changes.

 SAP AG BC ABAP Workbench Tutorial

April 2001 65

Insert a System Function Automatically
You can use the built-in capabilities of the ABAP Editor to insert function templates automatically
into your code. You then customize these templates to fit your application. Insert a function
automatically into your code by doing the following:

1. Open your fcode_100 module in change mode.

2. Find the endif entry that occurs immediately before the when space entry.

Look for the endif entry appears around line 97.

3. Insert a blank line before the endif line.

4. Select Edit � Insert statement.

The system displays the insert statement dialog.

5. Select CALL FUNCTION.

6. Enter POPUP_TO_CONFIRM_LOSS_OF_DATA in the space provided.

7. Choose Continue.

The system enters a template for the function.

8. Add code to the IF statement and finish the function template.

When you have finished, the code should look similar to the following The red text
indicates the information you must add:
message e004 with <tablename>-flid.
else.

call function 'POPUP_TO_CONFIRM_LOSS_OF_DATA'
exporting

textline1 = 'Delete Flight?'
TEXTLINE2 = ' '
titel = 'Attention'
START_COLUMN = 25
START_ROW = 6

importing
answer = answer.

check answer ne 'N'.
delete <tablename>.
clear <tablename>.
message s003 with <tablename>-flid.

endif.

9. Save your changes.

Check Your Work
Use the Program � Check function to check the syntax in your module.

BC ABAP Workbench Tutorial SAP AG

66 April 2001

Exercise 5: Creating a Message Class
This exercise teaches you how to create a message class. You use a message class to deliver
appropriate messages to your enduser. To create a message class, open your program object
list and proceed as follows:

1. Open your top include file.

2. Double-click the message ID.

The system asks you to confirm that you want to create a new message class.

3. Choose Yes.

The system displays the Maintain Message Class screen.

4. Enter the following in the Short text field:
Flight Application Messages

5. Save your changes.

The system displays the Maintain Object Catalog Entry dialog.

6. Choose Local object.

The system returns you to the Maintain Message Class screen.

7. Choose Messages.

The system displays the Maintain Messages screen.

8. Choose Maintain All to edit the messages.

9. Enter the following [Ext.]:

000 Flight already exists

001 Flight & was CREATED successfully.

002 Flight & was UPDATED successfully.

003 Flight & was DELETED successfully.

004 Flight & does not exist.

At runtime, the system replaces the ampersand (&) with the appropriate flight ID number.

10. Save your changes.

Check Your Work
Open the fcode_100 module. Double-click a message ID, for example e000. If you created
your messages successfully, the system takes you to the message definition.

 SAP AG BC ABAP Workbench Tutorial

April 2001 67

Exercise 6: Testing Your Transaction
In this example, you test your transaction in a separate SAP session. To run your transaction, go
to your program object list and proceed as follows:

1. Select your program name and choose Development object � Generate/activate.

If your program contains syntax errors, the system displays an error message.

2. Open a second SAP session by choosing System � Create session.

3. Enter your transaction name in the command field [Ext.].

The system starts your transaction in the session window.

4. Create a flight.

5. Return to your first SAP session and go to your private object list.

6. Open the Dictionary Objects folder.

7. Select your table and choose Execute.

The system displays the Data Browser Selection Screen.

8. Select Program � Execute to display your table.

The system displays all the flights in your application database.

Check Your Work
Experiment with each of the functions on your interface. You might want to:

� Create a flight bound for Peru.

� Delete an existing flight.

� Display a flight you know does not exist.

� Change an existing flight.

Be sure to check and make sure each of your error messages appears at an appropriate point in
each interaction. When you have finished experimenting, review your flight database again.

BC ABAP Workbench Tutorial SAP AG

68 April 2001

Exercise 7: Running the Debugger
You can use the debugger to identify problems in your application code. You can start the
debugger when you are in your transaction by entering /h in the command prompt. For this
exercise, you start your debugger from your program object list:

1. Select your transaction and choose Development Object � Test Execute.

The system displays the Execution Types dialog.

2. Select Debugging and choose Continue.

The system opens your program in debugging mode.

3. Double-click the flight ID field declaration.

The system places the variable in the Variables group box. Initially, there is no flight ID.

4. Choose Single-Step.

 The system starts executing your program. After each step, it returns you to the debugger.

5. Step through the remainder of your program.

Check Your Work
You can examine your flight table internally to check your work. From your program object list,
select your table object and choose Environment � Data Browser � Contents. Once you are
in the data browser screen, you can choose Execute to view a table of your entries.

 SAP AG BC ABAP Workbench Tutorial

April 2001 69

Review of Lesson 5
Lesson 5 taught you how to use the editor tool to enter ABAP code. You learned about some of
the operations you can use to create your own applications. In this lesson, you used the editor to:

� Create screen flow logic.

� Generate a screen interface.

� Create PAI and PBO modules.

� Copy code modules from existing modules.

� Insert and modify a function template.

You also learned how to create a message class and add messages to the class.

In the Next Lesson...
Lesson 6 completes your work with the create flight transaction example. It introduces you to the
tools and concepts you will need when programming in a team environment.

BC ABAP Workbench Tutorial SAP AG

70 April 2001

Lesson 6: Working in a Team
This lesson introduces you to the tools and the concepts you need to develop ABAP applications
in a team environment. The following topics are discussed:

Introduction to Lesson 6 [Page 71]

Exercise 1: Creating a Development Class [Page 73]

Exercise 2: Examining Change Request List [Page 74]

Exercise 3: Adding Another Programmer [Page 75]

Exercise 4: Creating a Program [Page 76]

Exercise 5: Releasing the Change Request [Page 77]

Review of Lesson 6 [Page 79]

 SAP AG BC ABAP Workbench Tutorial

April 2001 71

Introduction to Lesson 6
By now, you should have a good idea of the role each Workbench tool plays in application
development. This lesson introduces you to the tool and the concepts you will need to develop an
application with a team of programmers. When you complete this lesson, you will be able to:

� Understand concepts underlying team development with ABAP

� Create a development class in the R/3 system

� Track changes to your development class

� Release an object

Team ABAP Development Concepts
ABAP allows you to divide work on large projects among several programmers. Consider an
accounting application project with an accounts payable module and an accounts receivable
module. The ABAP environment helps you to create a work area in the system for the project.
You can then assign tasks to each programmer and follow their work as it progresses.

The tool you use for tracking development projects is called the Workbench Organizer. The steps
for creating a large project in the ABAP development group, are:

� Create a development class.
A development class [Ext.] groups objects that are logically related, such as the objects
that make up an accounting application. A development class is a type of development
object [Ext.].

� Create a change request.
A change request [Ext.] records the changes made to a development object. For
example, creating a program in a development class is considered a change to a
development object. A change request is associated with a single ABAP user.

� Program the project.
ABAP programs consist of transactions, reports, screens, and other development
objects. If the components of a project are constructed by more than one programmer,
you must assign each programmer a task [Ext.] under the change request. Tasks help
you to track who made changes to a program.

� Release the change request.
While a change request or a task is associated with a development object, the object is
locked. The lock also prevents other users from editing the object. Once changes are
complete and tested, a programmer releases the object.

In a standard SAP installation, a single machine acts as the development system and another
machine serves as the production system. New applications are created in the development
system and transported to the production system. Daily work takes place in the production
system.

The division between production and development systems is necessary because of when
application changes take effect. When a change is made to an existing ABAP application, the
change takes immediate effect. The division prevents development work adversely affecting daily
work flow.

BC ABAP Workbench Tutorial SAP AG

72 April 2001

 SAP AG BC ABAP Workbench Tutorial

April 2001 73

Exercise 1: Creating a Development Class
In this exercise, you create a development class for a fictitious accounting application. Recall that
a development class groups objects that are logically related. As a by-product of this exercise,
you will also create a change request. Change requests record an application’s development and
lock the objects in the class from modification by unauthorized users.

Go to the object browser initial screen and proceed as follows:

1. Select Development Class.

At this point, you must choose a name for your development class. For this example, use
a name in the form z<xxx> where <xxx> are your initials.

2. Enter the name of a development class.

3. Choose Display.

The system confirms the class does not exist and asks you if you want to create it.

4. Choose Yes.

The system displays the Change View “Development Classes” Details screen.

5. Enter descriptive short text for your new development class [Ext.].

6. Choose Save.

The system prompts you for a change request.

7. Choose Create request.

The system displays the Create Request screen. At this point, you must choose a
descriptive name for the change request. It is a good idea to choose a name that reflects
the development stage, for example, initial development or release 1.0 [Ext.].

8. Enter a short description and choose Save.

The system returns you to the Change Request dialog.

9. Choose Enter.

The system places you at the top of your new development class list.

Check Your Work
At this point, your development list contains a single folder for development class objects. You
can check the information associated with the class by double-clicking the development class
name.

BC ABAP Workbench Tutorial SAP AG

74 April 2001

Exercise 2: Examining Change Request List
In this exercise, you learn how to look at the change requests associated with your user name.
Recall that a change request records the changes made to a development object. Each request
is associated with a single ABAP user. To look at the change requests associated with your user
name, go to your new development class and proceed as

follows:

1. Choose Environment � Workbench Organizer.

The system opens the Workbench Organizer: Initial Screen.

2. Ensure that the following values are set:

Requests for user

Modifiable

Local

3. Choose Display from the Selection group box.

The system displays the change requests associated with your name.

Check Your Work
Open all the folders in your change request list [Ext.]. Your change request list contains a
single change request and a task. There is a user name associated with a change task. Your list
should show that you have performed only a single action in association with your new
development class; that action is the creation of the class itself.

 SAP AG BC ABAP Workbench Tutorial

April 2001 75

Exercise 3: Adding Another Programmer
In the last exercise, you learned how to display your own change request [Ext.] list. Right now,
only your name appears in association with your list. However, three programmers will construct
the accounting application. To track the activities of another programmer under the same change
request list, you create a task [Ext.] for the user by adding the user to the change request list.

1. Open the change request list.

2. Select the change request.

If you do not select the change request, the system does not allow you to add a user.

3. Choose Add user.

The system displays the Add User screen.

4. Enter a user name.

5. Choose Continue.

The system displays the user in the list.

Check Your Work
At this point, your change request list should contain two programmers [Ext.]. Because the
new user has not performed any actions associated with his or her task, no folder appears
besides his or her name.

BC ABAP Workbench Tutorial SAP AG

76 April 2001

Exercise 4: Creating a Program
You are already familiar with how to create a program from your work with Lesson 1 [Page 22].
However, the procedure for creating a program in a team environment is slightly different. When
you create a program or any development objects in a team environment, you must identify both
a development class [Ext.] and a change request. To create a program in a team environment,
proceed as follows:

1. Open the development object list you created in exercise 1.

2. Double-click Development class object types.

The system prompts you for the type of object you want to create.

3. Ensure that Program Object is selected and choose Cont.

The system displays a list of all the possible types of program objects.

4. Choose a program name.

Recall that there are specific SAP naming conventions [Page 14] you should follow. The
recommended format for your program name is SAPMZ<bb> where <bb> are your
initials.

5. Enter the program name you choose in the field provided.

6. Ensure that Program is selected and choose Create.

The system prompts you to confirm your selection.

7. Ensure that the program name is correct.

8. Turn off With TOP INCL.

9. Choose Continue.

The system displays the program attribute screen.

10. Enter attribute values for your program as follows:

Title Tutorial: Accounts Payable

Type M

Application *

11. Choose Save.

The system displays the Query for Change Request screen.

12. Enter change request you created in Exercise 1 [Page 73].

13. Choose Continue.

The system returns you to your program attributes screen.

Check Your Work
Display your change request list. Your personal task contains an ABAP program folder. Within
this folder, you can find your new program. If you like, try opening your program by double-
clicking its label.

 SAP AG BC ABAP Workbench Tutorial

April 2001 77

Exercise 5: Releasing the Change Request
In this exercise, you release the change request you created earlier. When you release a change
request, you make new programs or new features available to other users in the system. After a
request is released, other users can change the objects it contains. You cannot release a change
request without first releasing all the associated tasks. To release your change request, display
your change request list and proceed as follows:

1. Select the task that belongs to you.

2. Press Release.

The system displays the Document request/task screen.

3. Enter a short description of the task you are releasing.

For example, your description could appear as follows:
Initial release of accounting program.

4. Choose Save final version.

The task is stored in preparation for release.

5. Choose Back.

The system returns you to your change request list. Because you cannot release a task
that does not belong to you, you must first associate all the tasks in the request with your
user name. You can do this because you own the change request.

6. Select the task belonging to the other user.

7. Choose Change owner.

The system displays the Change User Name dialog.

8. Enter your user name in the New User field.

9. Choose Confirm.

The system reassigns the task to your user name. Because this task has no work
associated with it, you should delete it rather than release it.

10. Select the task and choose Request/task � Delete.

The system asks you to confirm your request.

11. Choose Yes.

The system deletes the empty task.

12. Choose the change request folder.

13. Choose Release.

The system releases all the changes into the system.

Check Your Work
Take a minute to check your changes. Go to the Workbench Organizer: Initial Screen and set
Modifiable and Released [Ext.]. When you next display the change requests associated with
your user name, both the released and modifiable (current) change requests appear. You can
view only released requests by turning Modifiable off.

BC ABAP Workbench Tutorial SAP AG

78 April 2001

 SAP AG BC ABAP Workbench Tutorial

April 2001 79

Review of Lesson 6
Lesson 6 introduced you to the main concepts you need to develop ABAP applications in a team
environment. You should now be familiar with the following terms:

� Development class

� Change request

� Task

You learned that a development class groups objects that are logically related. For example, all
the development objects associated with an accounting application are logically related. You also
learned that you track an application’s development using change requests and tasks. Both
change requests and tasks are associated with a single user.

You learned how to use the Workbench Organizer to display all the change requests associated
with a user. You used the organizer to add a user to an existing change request. Later, you
changed the owner of a task so that you could delete it. Finally, you used the organizer to release
your program for use in the system at large.

Where to Go From Here
You have completed the lessons included with the ABAP Workbench Tutorial. You should have a
good idea of the role each tool plays in the development of an ABAP application. At this point, if
you are familiar with ABAP programming, you should go on to read the ABAP Development
Workbench Tools [Ext.] documentation. This documentation discusses each Workbench tool in
detail.

For information on programming in ABAP, see the ABAP User's Guide [Ext.].

