
LPI certification 102 (release 2) exam
prep, Part 4

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Before you start... 2
2. USB devices and Linux ... 3
3. Secure shell ... 9
4. NFS... 11
5. Summary and resources .. 17

LPI certification 102 (release 2) exam prep, Part 4 Page 1 of 19

Section 1. Before you start

About this tutorial
Welcome to "USB, secure shell, and file sharing," the last of four tutorials designed to
prepare you for the Linux Professional Institute's 102 exam. In this tutorial, we'll introduce
you to the ins and outs of using USB devices, how to use the secure shell (ssh) and related
tools, and how to use and configure Network File System (NFS) version 3 servers and
clients.

This tutorial is ideal for those who want to learn about or improve their foundational Linux
USB, networking, and file sharing skills. It is particularly appropriate for those who will be
setting up applications or USB hardware on Linux servers or desktops. For many, much of
this material will be new, but more experienced Linux users may find this tutorial to be a
great way of rounding out their important Linux system administration skills. If you are new to
Linux, we recommend you start with Part 1 and work through the series from there.

By studying this series of tutorials (eight in all for the 101 and 102 exams; this is the eighth
and last installment), you'll have the knowledge you need to become a Linux Systems
Administrator and will be ready to attain an LPIC Level 1 certification (exams 101 and 102)
from the Linux Professional Institute if you so choose.

For those who have taken the release 1 version of this tutorial for reasons other than LPI
exam preparation, you probably don't need to take this one. However, if you do plan to take
the exams, you should strongly consider reading this revised tutorial.

The LPI logo is a trademark of the Linux Professional Institute.

About the authors
For technical questions about the content of this tutorial, contact the authors:

• Daniel Robbins, at drobbins@gentoo.org

• John Davis, at zhen@gentoo.org

Daniel Robbins lives in Albuquerque, New Mexico, and is the Chief Architect of Gentoo
Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the
Portage system, a next-generation ports system for Linux. He has also served as a
contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE Linux
Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming
language as well as to a potentially dangerous dose of Pac Man. This probably explains why
he has since served as a Lead Graphic Artist at Sony Electronic Publishing/Psygnosis.
Daniel enjoys spending time with his wife, Mary, and their daughter, Hadassah.

John Davis lives in Cleveland, Ohio, and is the Senior Documentation Coordinator for
Gentoo Linux, as well as a full-time computer science student at Mount Union College. Ever
since his first dose of Linux at age 11, John has become a religious follower and has not
looked back. When he is not writing, coding, or doing the college "thing," John can be found
mountain biking or spending time with his family and close friends.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 19 LPI certification 102 (release 2) exam prep, Part 4

http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi8-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi8-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi8-i.html
http://www.lpi.org/
http://www.lpi.org/
http://www.lpi.org/
mailto:drobbins@gentoo.org
mailto:zhen@gentoo.org
http://www.gentoo.org/
http://www.gentoo.org/
http://www.gentoo.org
http://www.gentoo.org

Section 2. USB devices and Linux

USB preliminaries
USB, or Universal Serial Bus, is a means of attaching devices and peripherals to your
computer using cute little rectangular plugs. Commonly used by keyboards, mice, printers,
and scanners, USB devices come in all shapes and sizes. One thing is certain: USB devices
have arrived and it's essential to be able to get them running under Linux.

Setting up USB under GNU/Linux has always been a fairly easy, but undocumented, task.
Users are often confused about whether or not to use modules, what the difference between
UHCI, OHCI, and EHCI is, and why in the world their specific USB device is not working.
This section should help clarify the different aspects of the Linux USB system.

This section assumes that you are familiar with how to compile your kernel, as well as the
basic operation of a GNU/Linux system. For more information on these subjects, please visit
the other LPI tutorials in this series, starting with Part 1, or The Linux Documentation Project
homepage (see the Resources on page 17 at the end of this tutorial for links).

Modular vs. monolithic USB
Kernel support for USB devices can be configured in two ways: as modules or statically
compiled into the kernel. Modular design allows for a smaller kernel size and quicker boot
times. Statically compiled support allows for boot-time detection of devices and takes away
the fuss of module dependencies. Both of these methods have their pros and cons, but the
use of modules is suggested because they are easier to troubleshoot. Later, when everything
is working, you may statically compile your USB device modules for convenience.

Grab a kernel
If you do not already have Linux kernel sources installed on your system, it is recommended
that you download the latest 2.4 series kernel from kernel.org or one of its many mirrors (see
the Resources on page 17 for a link).

Look at your hardware
Before compiling support for anything USB into your kernel, it is a good idea to find out what
kind of hardware your computer is running. A simple, very useful set of tools called pciutils
will get you on the right track. If you don't already have pciutils installed on your system, the
sources for the most recent pciutils can be found at its homepage, which is listed in the
Resources on page 17 .

Enter lspci
Running lspci should produce output similar to this:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 3 of 19

http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir21-i.html

lspci
00:00.0 Host bridge: Advanced Micro Devices [AMD] AMD-760 [IGD4-1P] System Controller (rev 13)
00:01.0 PCI bridge: Advanced Micro Devices [AMD] AMD-760 [IGD4-1P] AGP Bridge
00:07.0 ISA bridge: VIA Technologies, Inc. VT82C686 [Apollo Super South] (rev 40)
00:07.1 IDE interface: VIA Technologies, Inc. VT82C586A/B/VT82C686/A/B/VT8233/A/C/VT8235 PIPC Bus Master IDE (rev 06)
00:07.2 USB Controller: VIA Technologies, Inc. USB (rev 1a)
00:07.3 USB Controller: VIA Technologies, Inc. USB (rev 1a)
00:07.4 SMBus: VIA Technologies, Inc. VT82C686 [Apollo Super ACPI] (rev 40)
00:08.0 Serial controller: US Robotics/3Com 56K FaxModem Model 5610 (rev 01)
00:0b.0 VGA compatible controller: nVidia Corporation NV11DDR [GeForce2 MX 100 DDR/200 DDR] (rev b2)
00:0d.0 Ethernet controller: 3Com Corporation 3c905C-TX/TX-M [Tornado] (rev 78)
00:0f.0 Multimedia audio controller: Creative Labs SB Live! EMU10k1 (rev 08)
00:0f.1 Input device controller: Creative Labs SB Live! MIDI/Game Port (rev 08)
01:05.0 VGA compatible controller: nVidia Corporation NV25 [GeForce4 Ti 4400] (rev a2)

Enable the right host controller
As you can see, lspci gives a complete listing of all PCI/PCI Bus Masters that your
computer uses. The lines that are highlighted should be similar to what you are looking for in
your lspci readout. Since the example controller is a VIA type controller, it would use the
UHCI USB driver. For other chipsets, you would pick from one of these choices:

Driver Chipset

EHCI USB 2.0 Support

UHCI All Intel, all VIA chipsets

JE (Alternate to
UHCI

If UHCI does not work, and you have an Intel or VIA
chipset, try JE

OHCI Compaq, most PowerMacs, iMacs, and PowerBooks, OPTi,
SiS, ALi

cd /usr/src/linux
make menuconfig
make modules && make modules_install

Those cute USB modules
When the building completes, load the modules with modprobe, and your USB system will
be ready to use.

The following line loads core USB support:

modprobe usbcore

If you are using an EHCI controller, execute this line:

modprobe ehci-hcd

If you are using an UHCI controller, execute this line:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 19 LPI certification 102 (release 2) exam prep, Part 4

modprobe usb-uhci

If you are using a JE controller, execute this line:

modprobe uhci

If you are using an OHCI controller, execute this line:

modprobe usb-ohci

USB peripherals -- mice
Perhaps the most commonly used USB device is a USB mouse. Not only is it easy to install,
but it offers plug-and-play flexibility for laptop users who would rather not use the
homicide-inducing trackpad.

Before you can start using your USB mouse, you need to compile USB mouse support into
your kernel. Enable these two options:

Menuconfig location Option Reason

Input Core Support Mouse Support (Don't forget
to input your screen
resolution!)

Enabling this will hone your mouse tracking to
your resolution, which makes mousing across
large resolutions much nicer.

USB Support/ USB Human
Interface Devices (HID)

USB HIDPB Mouse (basic)
Support

Since your USB mouse is a USB HID (Human
Interface Device), choosing this option will enable
the necessary HID subsystems.

USB mice, continued
Now, compile your new USB mouse-related modules:

cd /usr/src/linux
make menuconfig
make modules && make modules_install

Once these options are compiled as modules, you are ready to load the usbmouse module
and proceed:

modprobe usbmouse

When the module finishes loading, go ahead and plug in your USB mouse. If you already
had the mouse plugged in while the machine was booting, no worries, as it will still work.

Once you plug in the mouse, use dmesg to see if it was detected by the kernel:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 5 of 19

dmesg
hub.c: new USB device 10:19.0-1, assigned address 2
input4: USB HID v0.01 Mouse [Microsoft Microsoft IntelliMouse Optical] on usb2:2.0

When you have confirmed that your mouse is recognized by the kernel, it is time to configure
XFree86 to use it. That's next.

USB mice and Xfree86
If you already have XFree86 installed and running with a non-USB mouse, not much
configuration change is needed to use it. The only item that you need to change is what
device XFree86 uses for your mouse. For our purposes, we will be using the /dev/input/mice
device, since it supports hotplugging of your mouse, which can be very handy for desktop
and laptop users alike. Your XF86Config file's "InputDevice" section should look similar to
this:

Section "InputDevice"
Identifier "Mouse0"
Driver "mouse"
Option "Protocol" "IMPS/2"
#The next line enables mouse wheel support
Option "ZAxisMapping" "4 5"
#The next line points XFree86 to the USB mouse device
Option "Device" "/dev/input/mice"

EndSection

Now, restart XFree86, and your USB mouse should be working just fine. Once everything is
working, go ahead and compile your USB modules into the kernel statically. Of course, this is
completely optional, so if you would like to keep your modules as modules, make sure they
are loaded at boot time so that you can use your mouse after you reboot.

Configuring a USB digital camera
Yet another great feature in GNU/Linux is its digital imaging support. Powerful photo editing
programs, such as the GIMP (see the Resources on page 17 for a link), make digital
photography come alive.

Before any digital picture editing can take place, you'll need to retrieve the pictures that are
going to be edited. Many times, digital cameras will have a USB port, but if yours does not,
these instructions will work for your media card reader as long as the file system on your
media card is supported in the Linux kernel.

USB Mass Storage works for anything that uses USB to access an internal drive of some
sort. Feel free to experiment with other hardware, such as USB MP3 players, as these
instructions will work the same. Additionally, note that older cameras with built-in serial ports
are not compatible with these instructions.

USB storage -- the modules
Most USB Mass Storage devices use SCSI emulation so that they can be accessed by the

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 19 LPI certification 102 (release 2) exam prep, Part 4

Linux kernel. Therefore, kernel support must be enabled for SCSI support, SCSI disk
support, SCSI generic support, and USB Mass Storage support.

cd /usr/src/linux
make menuconfig

Enable the following options:

Menuconfig location Option Reason

SCSI support SCSI support Enables basic SCSI support

SCSI support SCSI disk support Enables support for SCSI disks

SCSI support SCSI generic support Enables support for generic SCSI devices, as
well as some emulation

USB support/ USB Device
Class drivers

USB Mass Storage support Enables basic USB Mass Storage support; be
sure to enable the options listed below it if you
need support for any of that hardware

Build the USB storage modules
Since the options in the previous screen were compiled into your kernel as modules, there is
no need to rebuild your kernel or reboot your computer! We just need to remake modules,
and then load the newly compiled modules using modprobe.

make modules && make modules_install

Please note that your third-party modules, such as NVIDIA drivers and ALSA drivers, may be
overwritten by the module installation. You might want to reinstall those right after running
make modules_install.

Did it work?
Once your modules are rebuilt, plug in your camera or media card reader and load the USB
Mass Storage module:

The following line loads the SCSI disk support module:

modprobe sd_mod

The following line loads the USB Mass Storage support module:

modprobe usb-storage

Running dmesg should produce output similar to this:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 7 of 19

dmesg
Initializing USB Mass Storage driver...
usb.c: registered new driver usb-storage
scsi1 : SCSI emulation for USB Mass Storage devices
Vendor: SanDisk Model: ImageMate CF-SM Rev: 0100
Type: Direct-Access ANSI SCSI revision: 02
Vendor: SanDisk Model: ImageMate CF-SM Rev: 0100
Type: Direct-Access ANSI SCSI revision: 02

WARNING: USB Mass Storage data integrity not assured
USB Mass Storage device found at 2
USB Mass Storage support registered.

USB storage is go!
Congratulations! If you see something like the output in the previous screen, you're in
business. All you have left to do is mount the camera or media card reader, and you can
directly access your pictures.

On our machine, the card reader was mapped to /dev/sda1; yours might be different.

To mount your device, do the following (and note that your media's file system might not be
vfat, so substitute as needed):

mkdir /mnt/usb-storage
mount -t vfat /dev/sda1 /mnt/usb-storage

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 19 LPI certification 102 (release 2) exam prep, Part 4

Section 3. Secure shell

Interactive logins
Back in the old days, if you wanted to establish an interactive login session over the network,
you used telnet or rsh. However, as networking became more popular, these tools
became less and less appropriate. Why? Because they're horrendously insecure: the data
going between the telnet client and server isn't encrypted, and can thus be read by anyone
snooping the network.

Not only that, but authentication (the sending of your password to the server) is performed in
plain text, making it a trivial matter for someone capturing your network data to get instant
access to your password. In fact, using a network sniffer it's possible for someone to
reconstruct your entire telnet session, seeing everything on the screen that you see!
Obviously, tools such as telnet were designed with the assumption that the network was
secure and unsniffable and are inappropriate for today's distributed and public networks.

Secure shell
A better solution was needed, and that solution came in the form of a tool called ssh. A
popular modern incarnation of this tool is available in the openssh package, available for
virtually every Linux distribution, not to mention many other systems.

What sets ssh apart from its insecure cousins is that it encrypts all communications between
the client and the server using strong encryption. By doing this, it becomes very difficult or
impossible to monitor the communications between the client and server. In this way, ssh
provides its service as advertised -- it is a secure shell. In fact, ssh has excellent "all-around"
security -- even authentication takes advantage of encryption and various key exchange
strategies to ensure that the user's password cannot be easily grabbed by anyone monitoring
data being transmitted over the network.

In this age of Internet popularity, ssh is a valuable tool for enhancing network security when
using Linux systems. Most security-savvy network admins discourage or disallow the use of
telnet and rsh on their systems because ssh is such a capable and secure replacement.

Using ssh
Generally, most distributions' openssh packages can be used without any manual
configuration. After installing openssh, you'll have a couple of binaries. One is, of course,
ssh, the secure shell client that can be used to connect to any system running sshd, the
secure shell server. To use ssh, you typically start a session by typing something like:

$ ssh drobbins@remotebox

Above, you instruct ssh to log in as the "drobbins" user account on remotebox. Like telnet,
you'll be prompted for a password; after entering it, you'll be presented with a new login
session on the remote system.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 9 of 19

Starting sshd
If you want to allow ssh connections to your machine, you'll need to start the sshd server.
To start the sshd server, you would typically use the rc-script that came with your
distribution's openssh package by typing something like:

/etc/init.d/sshd start

or

/etc/rc.d/init.d/sshd start

If necessary, you can adjust configuration options for sshd by modifying the
/etc/ssh/sshd_config file. For more information on the various options available, type man
sshd.

Secure copy
The openssh package also comes with a handy tool called scp (secure copy). You can use
this command to securely copy files to and from various systems on the network. For
example, if you wanted to copy ~/foo.txt to our home directory on remotebox, you could type:

$ scp ~/foo.txt drobbins@remotebox:

Note the trailing colon -- without it, scp would have created a local file in the current working
directory called "drobbins@remotebox." However, with the colon, the intended action is
taken. After being prompted for the password on remotebox, the copy will be performed.

If you wanted to copy a file called bar.txt in remotebox's /tmp directory to the current working
directory on our local system, you could type:

$ scp drobbins@remotebox:/tmp/bar.txt .

Again, the ever-important colon separates the user and host name from the file path.

Secure shell authentication options
Openssh also has a number of other authentication methods. Used properly, they can let you
authenticate with remote systems without having to type in a password or passphrase for
every connection. To learn more about how to do this, read Daniel's openssh key
management articles on developerWorks (see the links in the Resources on page 17 at the
end of this tutorial).

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 19 LPI certification 102 (release 2) exam prep, Part 4

Section 4. NFS

Introducing NFS
The Network File System (NFS) is a technology that allows the transparent sharing of files
between UNIX and Linux systems connected via a Local Area Network, or LAN. NFS has
been around for a long time; it's well known and used extensively in the Linux and UNIX
worlds. In particular, NFS is often used to share home directories among many machines on
the network, providing a consistent environment for a user when he or she logs in to a
machine (any machine) on the LAN. Thanks to NFS, it's possible to mount remote file system
trees and have them fully integrated into a system's local file system. NFS' transparency and
maturity make it a useful and popular choice for network file sharing under Linux.

NFS basics
To share files using NFS, you first need to set up an NFS server. This NFS server can then
"export" file systems. When a file system is exported, it is made available for access by other
systems on the LAN. Then, any authorized system that is also set up as an NFS client can
mount this exported file system using the standard mount command. After the mount
completes, the remote file system is "grafted in" in the same way that a locally mounted file
system (such as /mnt/cdrom) would be after it is mounted. The fact that all of the file data is
being read from the NFS server rather than from a disk is not an issue to any standard Linux
application. Everything simply works.

Attributes of NFS
Shared NFS file systems have a number of interesting attributes. The first is a result of NFS'
stateless design. Because client access to the NFS server is stateless in nature, it's possible
for the NFS server to reboot without causing client applications to crash or fail. All access to
remote NFS files will simply "pause" until the server comes back online. Also, because of
NFS' stateless design, NFS servers can handle large numbers of clients without any
additional overhead besides that of transferring the actual file data over the network. In other
words, NFS performance is dependent on the amount of NFS data being transferred over the
network, rather than on the number of machines that happen to be requesting that data.

NFS version 3 under Linux
When you set up NFS, we recommend that you use NFS version 3 rather than version 2.
Version 2 has some significant problems with file locking and generally has a bad reputation
for breaking certain applications. On the other hand, NFS version 3 is very nice and robust
and does its job well. Now that Linux 2.2.18+ supports NFS 3 clients and servers, there's no
reason to consider using NFS 2 anymore.

Securing NFS
It's important to mention that NFS version 2 and 3 have some very clear security limitations.
They were designed to be used in a specific environment: a secure, trusted LAN. In

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 11 of 19

particular, NFS 2 and 3 were designed to be used on a LAN where "root" access to the
machine is only allowed by administrators. Due to the design of NFS 2 and NFS 3, if a
malicious user has "root" access to a machine on your LAN, he or she will be able to bypass
NFS security and very likely be able to access or even modify files on the NFS server that he
or she wouldn't normally be able to otherwise. For this reason, NFS should not be deployed
casually. If you're going to use NFS on your LAN, great -- but set up a firewall first. Make
sure that people outside your LAN won't be able to access your NFS server. Then, make
sure that your internal LAN is relatively secure and that you are fully aware of all the hosts
participating in your LAN.

Once your LAN's security has been thoroughly reviewed and (if necessary) improved, you're
ready to safely use NFS (see Part 3 of the 102 series for more on this).

NFS users and groups
When setting up NFS, it's important to ensure that all NFS machines (both servers and
clients) have identical user and group IDs in their user and group databases. Why? Because
NFS clients and servers use numeric user and group IDs internally and assume that the IDs
correspond to the same users and groups on all NFS-enabled machines.

Because of this, using mismatched user and group IDs with NFS can result in security
breaches -- particularly if two different users on different systems happen to be sharing the
same numerical UID.

So, before getting NFS set up on a larger LAN, it's a good idea to first set up NIS or NIS+.
NIS(+), which stands for "Network Information Service," allows you to have a user and group
database that can be centrally managed and shared throughout your entire LAN, ensuring
NFS ownership consistency as well as reducing administrative headaches.

NIS and NFS combined
When NIS+ and NFS are combined, you can configure Linux systems on your network so
that your users can log in to any box on your LAN -- and access their home directories and
files from that box. NIS+ provides the shared user database that allows a user to log in
anywhere, and NFS delivers the data. Both technologies work very well together.

While NIS+ is important, we don't have room to cover it in this tutorial. If you are planning to
take the LPI exams -- or want to be able to use NFS to its full potential -- be sure to study the
"Linux NFS HOWTO" by Thorsten Kukuk (see the Resources on page 17 for a link).

Setting up NFS under Linux
The first step in using NFS 3 is to set up an NFS 3 server. Choose the system that will be
serving files to the rest of your LAN. On our machine, we'll need to enable NFS server
support in the kernel. You should use a 2.2.18+ kernel (2.4+ recommended) to take
advantage of NFS 3, which is much more stable than NFS 2. If you're compiling your own
custom kernel, enter your /usr/src/linux directory and run make menuconfig. Then select
the "File Systems" section, then the "Network File Systems" section, and ensure that the
following options are enabled:

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 19 LPI certification 102 (release 2) exam prep, Part 4

http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir27-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linux-lpir27-i.html

<*> NFS file system support
[*] Provide NFSv3 client support
<*> NFS server support
[*] Provide NFSv3 server support

Getting ready for /etc/exports
Next, compile and install your new kernel and reboot. Your system will now have NFS 3
server and client support built in.

Now that our NFS server has support for NFS in the kernel, it's time to set up an /etc/exports
file. The /etc/exports file will describe the local file systems that will be made available for
export as well as:

• What hosts will be able to access these file systems

• Whether they will be exported as read/write or read-only

• Other options that control NFS behavior

But before we look at the format of the /etc/exports file, a big implementation warning is
needed! The NFS implementation in the Linux kernel only allows the export of one local
directory per file system. This means that if both /usr and /home are on the same ext3 file
system (on /dev/hda6, for example), then you can't have both /usr and /home export lines in
/etc/exports. If you try to add these lines, you'll see error like this when your /etc/exports file
gets reread (which will happen if you type exportfs -ra after your NFS server is up and
running):

sidekick:/home: Invalid argument

Working around export restrictions
Here's how to work around this problem. If /home and /usr are on the same underlying local
file system, you can't export them both, so just export /. NFS clients will then be able to
mount /home and /usr via NFS just fine, but your NFS server's /etc/exports file will now be
"legal," containing only one export line per underlying local file system. Now that you
understand this implementation quirk of Linux NFS, let's look at the format of /etc/exports.

The /etc/exports file
Probably the best way to understand the format of /etc/exports is to look at a quick example.
Here's a simple /etc/exports file that we use on our NFS server:

/etc/exports: NFS file systems being exported. See exports(5).
/ 192.168.1.9(rw,no_root_squash)
/mnt/backup 192.168.1.9(rw,no_root_squash)

As you can see, the first line in the /etc/exports file is a comment. On the second line, we
select our root ("/") file system for export. Note that while this exports everything under "/", it

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 13 of 19

will not export any other local file system. For example, if our NFS server has a CD-ROM
mounted at /mnt/cdrom, the contents of the CDROM will not be available unless they are
exported explicitly in /etc/exports. Now, notice the third line in our /etc/exports file. On this
line, we export /mnt/backup; as you might guess, /mnt/backup is on a separate file system
from /, and it contains a backup of our system.

Each line also has a "192.168.1.9(rw,no_root_squash)" on it. This information tells nfsd to
only make these exports available to the NFS client with the IP address of 192.168.1.9. It
also tells nfsd to make these file systems writeable as well as readable by NFS client
systems ("rw",) and instructs the NFS server to allow the remote NFS client to allow a
superuser account to have true "root" access to the file systems ("no_root_squash".)

Another /etc/exports file
Here's an /etc/exports that will export the same file systems as the one in the previous panel,
except that it will make our exports available to all machines on our LAN -- 192.168.1.1
through 192.168.1.254:

/etc/exports: NFS file systems being exported. See exports(5).
/ 192.168.1.1/24(rw,no_root_squash)
/mnt/backup 192.168.1.1/24(rw,no_root_squash)

In the above example /etc/exports file, we use a host mask of /24 to mask out the last eight
bits in the IP address we specify. It's very important that there is no space between the IP
address specification and the "(", or NFS will interpret your information incorrectly. And, as
you might guess, there are other options that you can specify besides "rw" and
"no_root_squash"; type "man exports" for a complete list.

Starting the NFS 3 server
Once /etc/exports is configured, you're ready to start your NFS server. Most distributions will
have an "nfs" initialization script that you can use to start NFS -- type /etc/init.d/nfs
start or /etc/rc.d/init.d/nfs start to use it -- or use "restart" instead of "start" if
your NFS server was already started at boot-time. Once NFS is started, typing rpcinfo
should display output that looks something like this:

rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100024 1 udp 32802 status
100024 1 tcp 46049 status
100011 1 udp 998 rquotad
100011 2 udp 998 rquotad
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100021 1 udp 32804 nlockmgr
100021 3 udp 32804 nlockmgr
100021 4 udp 32804 nlockmgr
100021 1 tcp 48026 nlockmgr

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 19 LPI certification 102 (release 2) exam prep, Part 4

100021 3 tcp 48026 nlockmgr
100021 4 tcp 48026 nlockmgr
100005 1 udp 32805 mountd
100005 1 tcp 39293 mountd
100005 2 udp 32805 mountd
100005 2 tcp 39293 mountd
100005 3 udp 32805 mountd
100005 3 tcp 39293 mountd

Changing export options
If you ever change your /etc/exports file while your NFS daemons are running, simply type
exportfs -ra to apply your changes. Now that your NFS server is up and running, you're
ready to configure NFS clients so that they can mount your exported file systems.

Configuring NFS clients
Kernel configuration for NFS 3 clients is similar to that of the NFS server, except that you
only need to ensure that the following options are enabled:

<*> NFS file system support
[*] Provide NFSv3 client support

Starting NFS client services
To start the appropriate NFS client daemons, you can typically use a system initialization
script called "nfslock" or "nfsmount." Typically, this script will start rpc.statd, which is all the
NFS 3 client needs -- rpc.statd allows file locking to work properly. Once all your client
services are set up, running rpcinfo on the local machine will display output that looks like
this:

rpcinfo
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100024 1 udp 32768 status
100024 1 tcp 32768 status

You can also perform this check from a remote system by typing rpcinfo -p myhost, as
follows:

rpcinfo -p sidekick
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100024 1 udp 32768 status
100024 1 tcp 32768 status

Mounting exported NFS file systems

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 15 of 19

Once both client and server are set up correctly (and assuming that the NFS server is
configured to allow connections from the client), you can go ahead and mount an exported
NFS file system on the client. In this example, "inventor" is the NFS server and "sidekick" (IP
address 192.168.1.9) is the NFS client. Inventor's /etc/exports file contains a line that looks
like this, allowing connections from any machine on the 192.168.1 network:

/ 192.168.1.1/24(rw,no_root_squash)

Now, logged into sidekick as root, you can type:

mount inventor:/ /mnt/nfs

Inventor's root file system will now be mounted on sidekick at /mnt/nfs; you should now be
able to type cd /mnt/nfs and look around inside and see inventor's files. Again, note that if
inventor's /home tree is on another file system, then /mnt/nfs/home will not contain anything
-- another mount (as well as another entry in inventor's /etc/exports file) will be required to
access that data.

Mounting directories *inside* exports
Note that inventor's / 192.168.1.1/24(rw,no_root_squash) line will also allow us to
mount directories inside /. For example, if inventor's /usr is on the same physical file system
as /, and you are only interested in mounting inventor's /usr on sidekick, you could type:

mount inventor:/usr /mnt/usr

Inventor's /usr tree will now be NFS mounted to the pre-existing /mnt/usr directory. It's
important to again note that inventor's /etc/exports file didn't need to explicitly export /usr; it
was included "for free" in our "/" export line.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 19 LPI certification 102 (release 2) exam prep, Part 4

Section 5. Summary and resources

Summary
This wraps up this tutorial and the LPI 102 series. We hope you've enjoyed the ride! You
should now be well versed on the use of ssh, NFS, and USB. To expand your Linux
knowledge even further, see the Resources on page 17 on the next panel.

Resources
Although the tutorial is over, learning never ends and we recommend you check out the
following resources, particularly if you plan to take the LPI 102 exam:

For more information on USB under GNU/Linux, please check out the official Linux USB
project page for more information.

If you do not have pciutils installed on your system, you can find the source at the pciutils
project homepage.

Get more information on XFree86 configuration at Xfree86.org.

Visit the project homepage for the venerable GIMP, or GNU Image Manipulation Program.

Daniel's OpenSSH key management series of articles on developerWorks is a great way to
gain a deeper understanding of the security features provided by OpenSSH:
• Part 1 on RSA/DSA authentication

• Part 2 on ssh-agent and keychain

• Part 3 on agent forwarding and keychain improvements

Also be sure to visit the home of openssh, which is an excellent place to continue your study
of this important tool.

The best thing you can do to improve your NFS skills is to try setting up your own NFS 3
server and client(s) -- the experience will be invaluable. The second-best thing you can do is
to read the quite good Linux NFS HOWTO, by Thorsten Kukuk.

We didn't have room to cover another important networked file-sharing technology: Samba.
For more information about Samba, we recommend that you read Daniel's Samba articles on
developerWorks:
• Part 1 on key concepts

• Part 2 on compiling and installing Samba

• Part 3 on Samba configuration

Once you're up to speed on Samba, we recommend that you spend some time studying the
Linux DNS HOWTO. The LPI 102 exam is also going to expect that you have some
familiarity with Sendmail. We didn't have enough room to cover Sendmail, but (fortunately for
us!) Red Hat has a good Sendmail HOWTO that will help to get you up to speed.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 17 of 19

http://www.linux-usb.org
http://www.linux-usb.org
http://www.linux-usb.org
http://www.linux-usb.org
http://www.linux-usb.org
http://atrey.karlin.mff.cuni.cz/~mj/pciutils.html
http://atrey.karlin.mff.cuni.cz/~mj/pciutils.html
http://atrey.karlin.mff.cuni.cz/~mj/pciutils.html
http://www.xfree86.org
http://www.xfree86.org
http://www.gimp.org
http://www.gimp.org
http://www.gimp.org
http://www.gimp.org
http://www.gimp.org
http://www.gimp.org
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc.html
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc2/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www-106.ibm.com/developerworks/linux/library/l-keyc3/
http://www.openssh.com
http://www.openssh.com
http://www.openssh.com
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://www.tldp.org/HOWTO/NFS-HOWTO/index.html
http://www-106.ibm.com/developerworks/library/l-sambaint/index.html
http://www-106.ibm.com/developerworks/library/l-sambaint/index.html
http://www-106.ibm.com/developerworks/library/l-sambaint/index.html
http://www-106.ibm.com/developerworks/library/l-sambaint/index.html
http://www-106.ibm.com/developerworks/library/l-sambaint/index.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba2.html
http://www-106.ibm.com/developerworks/library/l-samba3.html
http://www-106.ibm.com/developerworks/library/l-samba3.html
http://www-106.ibm.com/developerworks/library/l-samba3.html
http://www-106.ibm.com/developerworks/library/l-samba3.html
http://www-106.ibm.com/developerworks/library/l-samba3.html
http://www.tldp.org/HOWTO/DNS-HOWTO.html
http://www.tldp.org/HOWTO/DNS-HOWTO.html
http://www.tldp.org/HOWTO/DNS-HOWTO.html
http://www.redhat.com/support/resources/howto/RH-sendmail-HOWTO/book1.html
http://www.redhat.com/support/resources/howto/RH-sendmail-HOWTO/book1.html

In addition, we recommend the following general resources for learning more about Linux
and preparing for LPI certification in particular:

Linux kernels and more can be found at the Linux Kernel Archives.

You'll find a wealth of guides, HOWTOs, FAQs, and man pages at The Linux Documentation
Project. Be sure to check out Linux Gazette and LinuxFocus as well.

The Linux System Administrators guide, available from Linuxdoc.org's "Guides" section, is a
good complement to this series of tutorials -- give it a read! You may also find Eric S.
Raymond's Unix and Internet Fundamentals HOWTO to be helpful.

In the Bash by example article series on developerWorks, learn how to use bash
programming constructs to write your own bash scripts. This series (particularly parts 1 and
2) are excellent additional preparation for the LPI exam:
• Part 1 on fundamental programming in the Bourne-again shell

• Part 2 on more bash programming fundamentals

• Part 3 on the ebuild system

The Technical FAQ for Linux Users by Mark Chapman is a 50-page in-depth list of
frequently-asked Linux questions, along with detailed answers. The FAQ itself is in PDF
(Acrobat) format. If you're a beginning or intermediate Linux user, you really owe it to yourself
to check this FAQ out. The Linux glossary for Linux users, also from Mark, is excellent as
well.

If you're not very familiar with the vi editor, you should check out Daniel's tutorial on vi. This
developerWorks tutorial will give you a gentle yet fast-paced introduction to this powerful text
editor. Consider this must-read material if you don't know how to use vi.

For more information on the Linux Professional Institute, visit the LPI home page.

Feedback
Please send any tutorial feedback you may have to the authors:

• Daniel Robbins, at drobbins@gentoo.org

• John Davis, at zhen@gentoo.org

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 19 LPI certification 102 (release 2) exam prep, Part 4

http://www.kernel.org
http://www.kernel.org
http://www.kernel.org
http://www.tldp.org/
http://www.tldp.org/
http://www.tldp.org/
http://www.tldp.org/
http://www.tldp.org/LDP/LG/current/
http://www.tldp.org/LDP/LG/current/
http://www.tldp.org/linuxfocus/
http://www.tldp.org/guides.html
http://www.tldp.org/guides.html
http://www.tldp.org/guides.html
http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-gloss/index.html
http://www-106.ibm.com/developerworks/linux/library/l-gloss/index.html
http://www-106.ibm.com/developerworks/linux/library/l-gloss/index.html
http://www-106.ibm.com/developerworks/linux/library/l-gloss/index.html
http://www-106.ibm.com/developerworks/linux/library/l-gloss/index.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxvi-i.html
http://www.lpi.org/
http://www.lpi.org/
http://www.lpi.org/
mailto:drobbins@gentoo.org
mailto:zhen@gentoo.org

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 4 Page 19 of 19

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Before you start
	About this tutorial
	About the authors

	USB devices and Linux
	USB preliminaries
	Modular vs. monolithic USB
	Grab a kernel
	Look at your hardware
	Enter lspci
	Enable the right host controller
	Those cute USB modules
	USB peripherals -- mice
	USB mice, continued
	USB mice and Xfree86
	Configuring a USB digital camera
	USB storage -- the modules
	Build the USB storage modules
	Did it work?
	USB storage is go!

	Secure shell
	Interactive logins
	Secure shell
	Using ssh
	Starting sshd
	Secure copy
	Secure shell authentication options

	NFS
	Introducing NFS
	NFS basics
	Attributes of NFS
	NFS version 3 under Linux
	Securing NFS
	NFS users and groups
	NIS and NFS combined
	Setting up NFS under Linux
	Getting ready for /etc/exports
	Working around export restrictions
	The /etc/exports file
	Another /etc/exports file
	Starting the NFS 3 server
	Changing export options
	Configuring NFS clients
	Starting NFS client services
	Mounting exported NFS file systems
	Mounting directories *inside* exports

	Summary and resources
	Summary
	Resources
	Feedback

